
Comp 551: Machine Learning

Allan Wang

Last updated: March 26, 2019

Contents

1 Linear Regression 3

Least-Squares Error . 3

Gradient Descent . 3

Validation . 4

2 Linear Classification 5

Binary Classification . 5

Discriminative Models . 5

Generative Models . 6

3 Evaluation 7

Evaluating Classification . 7

Evaluating Regression . 8

4 Regularization 8

L2 Regularization . 9

L1 Regularization . 9

5 Decision Trees 10

Finding Best Test . 10

Avoiding Overfitting . 11

6 Features 12

Principal Component Analysis (PCA) . 12

Variable Ranking . 12

1

COMP 551 CONTENTS Allan Wang

7 Instance Learning 13

One-Nearest Neighbour . 13

K-Nearest Neighbour (KNN) . 13

Distance-Weighted (kernel-based) NN . 14

8 Support Vector Machines (SVM) 14

Perceptron . 14

Linear SVM . 15

9 Ensembles 15

Bagging . 15

Boosting . 16

Stacking . 17

10 Neural Networks 17

Gradient Descent . 17

11 Backpropagation 18

Activation Functions . 18

Derivatives . 19

Momentum . 20

12 Convolutional Neural Network (CNN) 20

Recurrent Neural Network (RNN) . 21

Recurrence . 21

Long Short-Term Memory (LSTM) . 22

Page 2 of 23

COMP 551 1 LINEAR REGRESSION Allan Wang

1 Linear Regression

• Classification - discrete set output

• Regression - continuous output

• Supervised learning - given training examples with labels, find model to predict labels

given input

• i.i.d assumption - training set is assumed to be independently and identically distributed

• Linear hypothesis - find weights to minimize

Err() = Σi=1:n(yi − wTxi)2 (1)

Least-Squares Error

fw = argminΣi=1:n(yi − wTxi)2

ŵ = (XTX)−1XTY
(2)

• Note that both w and x vectors have an extra dimension (m + 1) for a dummy/intercept

term (all 1s for x)

• Computational cost is O(m3 + nm2) for n inputs and m features

• Only works if XTX is nonsingular (no correlation between features)

– If a feature is a linear function of others, you can drop it

– If the number of features exceeds number of training examples, you can reduce

the number of features

Gradient Descent

wk+1 = wk − αk
∂Err(wk)

∂wk
∂Err(w)

∂w
= 2(XTXw −XTY)

(3)

• Less expensive approach; weights calculated through iterations

• Goal is to reduce the weight errors from the previous iteration

• Repeat until |wk+1 − wk| < ε

• ak > 0 is the learning rate for iteration k

– If too large, oscillates forever

Page 3 of 23

COMP 551 1 LINEAR REGRESSION Allan Wang

– If too small, takes longer to reach local minimum

• Robbins-Monroe conditions prove convergence:

Σk=0:∞αk =∞

Σk=0:∞α
2
k <∞

(4)

• Not that convergence is to local minimum only, not always global

• Feature design - if features cannot fully represent a model, we can transform them

using non linear functions (eg powers, binary thresholds, etc) into new features. Note

that the weights are still linear combinations.

• Overfitting - hypothesis explains training data well, but does not generalize to new

data; high variance, low bias

• Underfitting - does not capture trend; low variance, high bias

• Simple model - high training error, high test error

• Complex model - low training error, high test error

• Training error always goes down with complexity, but at some point in between, test

error will be at its lowest

Validation

• Validation set should be separate from training data

• K-Fold cross validation

– Create k partitions for available data

– For each iteration, train with k − 1 subsets, then validate on remaining subset.

Repeat k times

– Return average prediction error

• Leave-One-Out Cross Validation

– K-fold where k = n

Page 4 of 23

COMP 551 2 LINEAR CLASSIFICATION Allan Wang

2 Linear Classification

Binary Classification

• Probabilistic - estimate conditional probability P (y|x) given feature data

• Decision boundaries - partition feature spaces into different regions

Discriminative Models

• Directly estimate P (y|x)

– Answers what what the features tell us about the class

– Difficult to estimate

• Log-odds ratio

a = ln
P (y = 1|x)

P (y = 0|x)
(5)

– Outputs likelihood of y = 1 vs y = 0

– Decision boundary is set of points for which a = 0

• Logistic function - predicted probability for y = 1

σ(wTx) =
1

1 + e−wT x
(6)

• Likelihood
L(D) = P (y1, y2, ..., yn|x1, x2, ..., xn, w)

=
n∏
i=1

σ(wTxi)
yi(1− σ(wTxi))

1−yi
(7)

– Numerically unstable for lots of small numbers

• Log-Likelihood

l(D) = ln(L(D))

= Σn
i=1yiln(σ(wTxi)) + (1− yi)ln(1− σ(wTxi))

(8)

– Easier to optimize

– Negative log-likelihood = cross-entropy loss

Maximizing log-likelihood = minimizing cross-entropy loss

Page 5 of 23

COMP 551 2 LINEAR CLASSIFICATION Allan Wang

• Many kinds of losses exist, eg absolute error, or binary; however, these losses are not

always easy to optimize (not differentiable)

• Gradient descent update rule

wk+1 = wk + αkΣi=1:nxi(yi − σ(wTk xk)) (9)

Generative Models

• Use Bayes’ rule to estimate

P (y = 1|x) =
P (x|y = 1)P (y = 1)

P (x)
(10)

– Finds the marginal probability of a class

– Easy to estimate

• Linear Discriminant Analysis (LDA)

P (x|y) =
e−

1
2

(x−µ)T Σ−1(x−µ)

(2π)
1
2 |Σ|

1
2

(11)

– Every class assumed to be Gaussian/normally distributed

– Both classes have same covariance matrix Σ, but different means µ

– Estimations

P (y = 0) =
N0

N0 +N1

P (y = 1) =
N1

N0 +N1

µ0 =
Σi=1:nI(yi = 0)xi

N0

µ1 =
Σi=1:nI(yi = 1)xi

N1

Σ =
Σk=0:1Σi=1:nI(yi = k)(xi − µi)(xi − µk)T

N0 +N1 − 2

(12)

∗ N0 and N1 are the # of training samples from classes 1 and 0 respectively

∗ I(x) is an indicator function: I(x) = 0 if x = 0, I(x) = 1 if x = 1

Page 6 of 23

COMP 551 3 EVALUATION Allan Wang

– Cost is O(m2) for m classes

• Quadratic Discriminant Analysis (QDA)

– Allows different covariance matrices, Σy for each class y

– Cost is O(nm2) for m classes and n features

• Näıve Bayes

– Assumes xj is conditionally independent given y

P (xj|y) = P (xj|y, xk)∀j, k (13)

– Still one Σy per class, but they are diagonal

– Cost is O(nm) for m classes and n features

• Laplace smoothing

– Replace maximum likelihood estimator:

Before:

Pr(xj|y = 1) =
(number of instances with xj = 1 and y = 1)

(number of examples with y = 1)

After:

Pr(xj|y = 1) =
(number of instances with xj = 1 and y = 1) + 1

(number of examples with y = 1) + 2

(14)

– Allows data we previously did not encounter to have a probability greater than 0

3 Evaluation

Evaluating Classification

• True positive (m11) - expect 1, predict 1

• False positive (m01) - expect 0, predict 1; type I error

• True negative (m00) - expect 0, predict 0

• False negative (m10) - expect 1, predict 0; type II error

Page 7 of 23

COMP 551 4 REGULARIZATION Allan Wang

•
Error rate

m01 +m10

m

Accuracy
TP + TN

ALL

Precision
TP

TP + FP

Recall/Sensitivity
TP

TP + FN

Specificity
TN

FP + TN

False positive rate
FP

FP + TN

F1 measure F = 2 · precision · recall
precision+ recall

(15)

• Receiver operating characteristic (ROC)

– Plot true negative and true positive prediction rates based on a moving boundary

– Comparison done by looking at area under ROC curve (AUC)

– In a perfect algorithm, AUC = 1; for random algorithms, AUC = 0.5

Evaluating Regression

• Mean Square Error

MSE =
1

n
Σn
i=1(ŷi − yi)2 (16)

• Root Mean Square Error

RMSE =

√
1

n
Σn
i=1(ŷi − yi)2 (17)

• Mean Absolute Error

MAE =
1

n
Σn
i=1 |ŷi − yi| (18)

4 Regularization

• High bias - simple model

• High variance - overly complex model

• Regularization

Page 8 of 23

COMP 551 4 REGULARIZATION Allan Wang

– Reduce overfitting

– Reduce variance at the cost of bias

L2 Regularization

• Aka ridge regression

ŵridge = argminw(Σi=1:n(yi − wTxi)2 + λΣj=0:mw
2
j)

= (XTX + λI)−1XTY
(19)

– λ can be selected manually or by cross validation

– Not equivariant under scaling of data; typically need to normalize inputs first

– Can also modify penalty by adding penalty term 2λw

∂Err(w)

∂w
= 2(XTXw −XTY) + 2λw (20)

– Tends to lower all weights

L1 Regularization

• Aka lasso regression

ŵlasso = argminw(Σi=1:n(yi − wTxi)2 + λΣj=1:m |wj|) (21)

• More computationally expensive than L2

• Sets the weights of less relevant input features to 0

• Can also modify penalty by adding penalty term λsign(w) where

– sign(x) = 1 if x > 0

– sign(x) = 0 if x = 0

– sign(x) = −1 if x < 0

• Elastic net combines L2 and L1

Page 9 of 23

COMP 551 5 DECISION TREES Allan Wang

5 Decision Trees

• Nodes represent partitions

• Internal nodes are tests based on different features

– Typically branch on all possibilities for discrete features

– Typically branch on threshold values for continuous features

• Leaf nodes include set of training examples satisfying all tests along the branch

• Can express every boolean function; goal is to encode functions compactly

• Typically constructed sing recursive top-down procedure + pruning to avoid overfitting

• Advantages: fast, easy to interpret, accurate

• Disadvantages: sensitive to outliers, bad for learning functions with smooth, curvilinear

boundaries

• Approach

1. If training instances have same class, create leaf with that class label and exit

2. Else, pick best test to split on

3. Split training data

4. Recurse on 1-3 for each subset

Finding Best Test

• If event E with probability P (E) has occurred with certainty, we received I(E) bits of

information, where

I(E) = log2
1

P (E)
(22)

• Events with smaller probabilities produce more bits of information

• Entropy (H(S))- average amount of information from source S, which emits symbols

{s1, ..., sk} with probabilities {p1, ..., pk}

H(S) = ΣipiI(si) = −Σipilog2pi (23)

• Conditional entropy

H(y|x) = ΣvP (x = v)H(y|x = v) (24)

Page 10 of 23

COMP 551 5 DECISION TREES Allan Wang

• Information gain - reduction in entropy obtained by knowing x

IG(x) = H(D)−H(D|x) (25)

• Binary Classification

– Given p positive samples and n negative samples:

H(D) = − p

p+ n
log2

p

p+ n
− n

p+ n
log2

n

p+ n
(26)

– Example: Given 40 examples with 30 positive and 10 negative, as well as a test

T that divides to [15+, 7-] for true and [15+, 3-] for false, we obtain entropy

H(D|T) =
22

40

[
−15

22
log2

15

22
− 7

22
log2

7

22

]
+

18

40

[
−15

18
log2

15

18
− 3

18
log2

3

18

]
= 0.788

(27)

• For classification, choose test with highest information gain

• For regression, choose test with lowest MSE

• For real-valued features, can select possible thresholds based on midpoints of data

values

Avoiding Overfitting

• Remove some nodes for better generalization

• Early stopping - stop growing tree if splits do not improve information gain of validation

step

• Post pruning - grow full tree then remove lower nodes with low information gain on

validation set (generally better)

– For each node:

– Evaluate validation set accuracy if subtree is pruned

– Greedily remove nodes that most improve validation set accuracy

– Replace removed node by leaf with majority class of corresponding examples

– Stop when pruning hurts validation set accuracy

Page 11 of 23

COMP 551 6 FEATURES Allan Wang

6 Features

• Strategies

– Domain knowledge to construct “add hoc” features

– Normalization

– Non-linear expansions

– Regularization

• NLP Features

– Words (binary, absolute frequency, relative frequency)

– TF-IDF

– N-grams

– Syntactic features

– Word embeddings

– Stopwords (common words that may not provide much information)

– Lemmatization (inflectional morphology)

• Approaches

– Wrapper & filter - applied during preprocessing

– Embedded - integrated in optimization method (eg regularization)

Principal Component Analysis (PCA)

• Project data into lower-dimensional sub-spaces

• Solves

argminW,UΣi=1:n

∥∥X −XWUT
∥∥2

(28)

• Solution W given by eigen-decomposition of XTX; columns are orthogonal

Variable Ranking

• Rank features using scoring features; select the highest ranked features

• Simple & fast, but requires a scoring function

• Scoring functions

Page 12 of 23

COMP 551 7 INSTANCE LEARNING Allan Wang

– Correlation

– Mutual information (finds nonlinear relationships)

7 Instance Learning

• Parametric supervised learning

– Assumes we have labelled examples

– Learns parameter vector of fixed size

• Non-parametric learning

– Store all training examples 〈xi, yi〉
– With new query, compute value based on most similar points

– Requires distance function (eg euclidian distance)

∗ Often domain specific

∗ May require feature preprocessing

∗ Can sometimes be learned

One-Nearest Neighbour

• Lazy learning - generalization upon query

• Requires no learning (just store data)

• For new point xnew, find nearest sample xi∗ = argminid(xi, x) and predict ynew = yi∗

• Essentially results in a decision boundary where each boundary is equidistance between

two points of opposite classes

K-Nearest Neighbour (KNN)

• Requires no learning (just store data)

• For new point xnew, find k nearest training samples

• For regression, predict mean/median of neighbouring y values

• For classification, predict majority or empirical probability of each class

• Low k results in low bias and high variance

• High k results in high bias and low variance

• Sensitive to small variations

Page 13 of 23

COMP 551 8 SUPPORT VECTOR MACHINES (SVM) Allan Wang

Distance-Weighted (kernel-based) NN

• For new point xnew, compute wi = w(d(xi, xnew)) for all xi in training data, where d is

a weighting function and predict y =
Σiwiyi
Σiwi

• Example of a weighting function is the inverse euclidean distance

• For gaussian weighting, bigger σ results in more variance

• Instance based learning is useful when

– A good distance metric exists

– There aren’t too many attributes per instance (otherwise distances will be similar,

leading to noise)

8 Support Vector Machines (SVM)

Perceptron

hw(x) = sign(wTx) (29)

• Outputs +1 if wTx ≥ 0, -1 otherwise

• Decision boundary is wTx = 0

• Gradient-descent learning

Err(w) = Σi=1:n

{
0 if yiw

Txi ≥ 0;−yiwTx otherwise
}

(30)

– Error is 0 for correctly classified example

– Error shows how much to shift for incorrectly classified example

– Error is 0 if all examples are classified correctly

• Learning converges within finite number of updates for linearly separable datasets;

otherwise, there will be oscillation

• Dual representation

w = Σi=1:nαiyixi (31)

– αi is sum of step sizes used for all updates applied to example i

• Solution often non-unique; depends on order of updates

Page 14 of 23

COMP 551 9 ENSEMBLES Allan Wang

Linear SVM

• Choose w such that margin is maximized

• Margin is twice the Euclidean distance from hyper-plane to nearest training example

• Let γi be the distance from xi to decision boundary, connected at point x0
i . Let w be

the normal to the decision boundary. We can define:

x0
i = xi −

γiw

‖w‖ (32)

–
w

‖w‖
is the unit normal

– γi is the scalar distance from xi to x0
i

• Goal is to minimize 1
2
‖w‖2 with respect to w such that yiw

Txi ≥ 1

• \\TODO Lagrangian optimization; 439

• Support vectors - points lying on edge of margin, affecting the decision boundary

• \\TODO Hinge loss; 461

• Multiple classes

– One-vs-all - learn K separate binary classifiers

∗ Can be inconsistent

∗ Training sets are imbalanced

– Multi-class SVM

9 Ensembles

Run base algorithms multiple times, then combine predictions for a final prediction

Bagging

• Create K independent models by training same base algorithm on different subsets of

training data

• Reduces variance, increases bias

• Good for “reasonable” classifiers

• Bootstrapping - cross-validation but using random sampling with replacement

Page 15 of 23

COMP 551 9 ENSEMBLES Allan Wang

– For new dataset, randomly select value from full dataset with replacement until

size is sufficient

• Incremental construction

– Hypotheses should not be constructed independently

– New hypotheses should focus on problematic instances

• Random forest

– Use K bootstrap replicates to train K different trees

– For each node, pick m variables at random (where m < M , M being the total

number of features)

– Determine best test using normalized information gain

– Recurse until depth is reached without pruning

– Resulting trees have high variance, but ensemble uses average, which reduces

variance

– Fast & can handle lots of data

– Can circumvent difficulties in optimization

– Low interpretability

– New predictions may be more expensive (need to go through all trees)

Boosting

• Incrementally train K models, where each successive model tries to fix mistakes of

previous models

• Reduces bias & increases classification margin

• Tends not to overfit

• Good for very simple classifiers

• Problematic if lots of data is mislabelled

• Algorithm

– Train simple predictor

– Re-weight training examples, putting more weight on those that were not properly

classified

– Repeat n times

• Adaboost adapts error rate to reduce training error exponentially fast

Page 16 of 23

COMP 551 10 NEURAL NETWORKS Allan Wang

Stacking

• Stacking - train K different models and combine their output

• Predictions from base models become features of new meta-model

• Works well when base models have complimentary strengths and weaknesses

10 Neural Networks

• A single perceptron can represent linear boundaries, but cannot represent non-linearly

separated functions like XOR. However, stacking perceptrons to create new datasets

allows more functions to become linearly separable

• Sigmoid function provides “soft threshold”, whereas perceptron provides “hard thresh-

old”

• Feed-forward neural network

– Connections from one layer to the next in one direction; no connections between

units of the same layer

– Hidden units are hi = σ(wTi x+ bi),∀i
– Unlike stacking, we jointly train the entire network

– Can have multiple output units

– Depth - number of layers

– Fully-connected - if all units in layer j provide input to all units in layer j + 1

• Neural network with two hidden layers can approximate any function to arbitrary

accuracy

• Activation function can be an arbitrary non-linear function, not just limited to sigmoid

Gradient Descent

• Used to minimize errors, as hypothesis is differentiable and too complex to compute

optimal weights directly

• Stochastic gradient descent

1. Initialize weights to small random numbers

2. Pick single training example x

3. Feed example then compute correction

Page 17 of 23

COMP 551 11 BACKPROPAGATION Allan Wang

4. Compute correction for output unit

∂J

∂wout
= δoutx (33)

5. Compute correction for each hidden unit j

∂J

∂wj
= δoutwout,jσ(wTj x+ b)(1− σ(wTj x+ b))x (34)

6. Update each network weight

wj = wj − α
∂J

∂wj
∀j

wout = wout − α
∂J

∂wout

(35)

7. Repeat from step 2 until convergence

• Batch gradient descent

– Compute error on all examples

– Loop through training data, accumulating weight changes

– Update all weights and repeat

• Mini-batch gradient descent

– Compute error on randomly selected subset

11 Backpropagation

Activation Functions

• Sigmoid

φ(z) =
1

1 + e−z
(36)

– Easy to differentiate

– Easily saturates; inputs outside of [-4, 4] remain essentially constant, making it

hard to train

• Tanh

φ(z) = tanh(z) =
ez − e−z

ez + e−z
(37)

Page 18 of 23

COMP 551 11 BACKPROPAGATION Allan Wang

– Easy to differentiate (1− tanh2(z))

– Slightly less prone to saturation than sigmoid

• ReLU

ReLU(z) = max(z, 0) (38)

– Unbounded range; never saturates

– De facto standard

• Softplus

softplus(z) = ln(1 + ex) (39)

– Similar to ReLU but smoother

– Expensive derivative compared to ReLU

Derivatives

• Tell us how much we impact another node if we change one node by one unit

• For non-neighbouring nodes, sum over all possible paths from one node to the other,

multiplying derivatives on each edge of the path

• Computationally intensive, so we can instead factor paths by summing derivatives of

all inputs to a node first

• Forward mode - start from source, and at each node, sum all incoming edges/derivatives

• Reverse mode - start from sink, and at each node, sum all outgoing edges/derivatives

• Both only touch each edge once, but since we want derivatives of the output/loss with

respect to all previous layers, reverse mode is better

• Reverse-mode automatic differentiation (RV-AD) = backpropagation

• Guaranteed convergence to local minimum

• Use random restarts to find better minimum

• Overtraining occurs if weights take on large magnitudes; # of training updates is also

a hyper-parameter

• Adaptive optimization algorithms change learning rates for each parameter based on

history of gradient updates

Page 19 of 23

COMP 551 12 CONVOLUTIONAL NEURAL NETWORK (CNN) Allan Wang

Momentum

On ith gradient descent, add momentum (second term)

∆iw = α
∂J

∂w
+ β∆i−1w (40)

• Allows us to pass small local minima

• Keeps weights moving if error is flat

• However, can get out of a global maximum

• Is tunable, increasing chance of divergence

12 Convolutional Neural Network (CNN)

• Often used in computer vision

• Input usually 3D tensor for 2D RGB image

• Local receptive fields

– Hidden unit connected to patch of input image

– Unit connected to all 3 colours channels

• Share matrix of parameters across units

– Units within depth slice at all positions have same weights

– Feature map computed via discrete convolution with kernel matrix

• Pooling/subsampling of hidden units in same neighbourhood

– Dimensionality reduced, making features more high-level & abstract

• Convolutional “kernels” aim to extract useful information (eg blurring/edge detection)

• Can have multiple layers, vary width/size of receptive fields, and vary stride (spacing

between receptive fields)

• Pooling layers often added between convolutional layers; takes max of inputs in recep-

tive fields

• Dropout regularization

– Helps generalize better & reduce overfitting

– Independently set each hidden unit to zero with probability p (often p = 0.5)

Page 20 of 23

COMP 551 12 CONVOLUTIONAL NEURAL NETWORK (CNN) Allan Wang

• Batch normalization

– Compute mean & variance independently for each dimension and normalize each

input

– Usually done already at input layer, but this extends it to other layers

– Results in more stable gradient estimates

• Can use softmax instead of sigmoid for multi-class classification (not the same as multi-

output classification)

Recurrent Neural Network (RNN)

• Often used in text & speech

• Allows us to retain temporal information in sequences

• Add cycles with time delay (affects next step, to avoid infinite loops); see recurrence

below [12]

• Output types

– One at the end of the sequence (eg sentiment classification)

– One at each time step (eg language generation)

∗ Use softmax

∗ Usually add an “end of sentence” token for stopping

• One-hot vectors

– Map each value to column of a weight matrix

– Removes bias associated with categorical value

• Train using backpropagation through time (BPTT)

– Same as regular backpropagation, but we unroll the computation graphto find the

flow through all layers

– Can truncate flow by using only last k time steps

Recurrence

Elman RNN

ht = σ(Wht−1 + Uxt + b)

ot = φ(V ht + c)
(41)

Page 21 of 23

COMP 551 12 CONVOLUTIONAL NEURAL NETWORK (CNN) Allan Wang

Jordan RNN

ht = σ(Wot−1 + Uxt + b)

ot = φ(V ht + c)
(42)

• Elman usually better, as output is often constrained, resulting in information loss

Long Short-Term Memory (LSTM)

• Long-term dependencies are hard to learn. Given that the transition matrix W is the

same for each step, a small offset from 1 will cause gradients to explode or vanish

• Can avoid exploding gradients through gradient clipping. If gradient magnitude is

better than threshold, set it to threshold ∗ sign(gradient)

• Can also use non-multiplicative interactions like LSTM (additive)

• LSTM has a hidden state (past info for next prediction) and cell state (past info for

future predictions)

• Uses gates to control information flow

• Input gate - what info from current input & previous hidden state do we want to

transfer to cell state?
it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(WC · [ht−1, xt] + bC)
(43)

• Cell update - additive linear combination of old cell state & processed input

Ct = ft ∗ Ct−1 + it ∗ C̃t (44)

• Output gate - what information from cell state do we need for next prediction?

ot = σ(Wo [ht−1, xt] + bo)

ht = ot ∗ tanh(Ct)
(45)

• Use bidirectional LSTMs to increase expressiveness; apply both left-ro-right and right-

to-left

• Can also add attention by adding connections from encoder hidden states to context

vector

Page 22 of 23

COMP 551 12 CONVOLUTIONAL NEURAL NETWORK (CNN) Allan Wang

• To produce output of a different length from input, use two RNNs. ‘Encoder’ RNN

transforms input to vector. ‘Decoder’ RNN generates sequence from vector. Vector is

often referred to as the “context” vector, and as used as input to the decoder at every

timestep, along with the output at the previous timestep.

• Teacher forcing - train model by inputting ground-truth instead of input from previous

iteration. No change done for testing as we don’t have labels.

Page 23 of 23

	Linear Regression
	Least-Squares Error
	Gradient Descent
	Validation

	Linear Classification
	Binary Classification
	Discriminative Models
	Generative Models

	Evaluation
	Evaluating Classification
	Evaluating Regression

	Regularization
	L2 Regularization
	L1 Regularization

	Decision Trees
	Finding Best Test
	Avoiding Overfitting

	Features
	Principal Component Analysis (PCA)
	Variable Ranking

	Instance Learning
	One-Nearest Neighbour
	K-Nearest Neighbour (KNN)
	Distance-Weighted (kernel-based) NN

	Support Vector Machines (SVM)
	Perceptron
	Linear SVM

	Ensembles
	Bagging
	Boosting
	Stacking

	Neural Networks
	Gradient Descent

	Backpropagation
	Activation Functions
	Derivatives
	Momentum

	Convolutional Neural Network (CNN)
	Recurrent Neural Network (RNN)
	Recurrence
	Long Short-Term Memory (LSTM)

