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1 2018/01/9

2 2018/01/11

v ⊆ Rn is a subspace of Rn if

1. ~O ∈ V ie V is non empty

2. ~u+ ~v ∈ V whenever ~u ∈ V + ~α ∈ V
3. α~u ∈ V whenever ~u ∈ V, ~α ∈ R

A subspace V of R has a basis

ie a family {−→u1,−→u2, ...,−→uk} of vectors in V such that {−→u1,−→u2, ...,−→uk} is a spanning set of V

A spanning set of V is a set such that every vector in V is a linear combination of that set

ie whenever α1
−→u1 + α2

−→u2 + ...+ αk
−→uk = 0

if Aα = 0, rank of A is k(≤ n), where k = dimension of V

Examples

1. E =

−→u =

 t

2t+ s

1

 , t ∈ R, s ∈ R

 ⊆ R3 * E is not a subspace of R3 as the 0 matrix

is not included

2. F =

−→u =

 t+ s

2t+ s′

1

 , t, s′ ∈ R

 ⊆ R3

−→u ∈ F ⇒

 t+ s

2t = s′

0

 = t

1

2

0

+ s′

 1

−1

0


F = span


1

2

0

 ,
 1

−1

0


 (linearly independent)

3. let A =

 1, 1

2,−1

0, 0

→
1, 0

0, 1

0, 0


Rank(A) = 2: therefore


 1, 1

2,−1

0, 0


1, 0

0, 1

0, 0


 is linearly independent.
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3 2018/01/16

3.1 Diagonalization

T : R2 → R2

projection onto the line

A = 1
2

[
1 −1

−1 1

]
x + y = 0

A is diagonalizable, ie A+ P ·D · P−1

where D =

[
1 0

0 0

]
, P =

[
1 1

−1 1

]

Let −→u1 =

[
1

−1

]
and −→v1 =

[
1

1

]

The canonical basis of R2 is B =

{[
1

0

]
=
−→
i ,

[
0

1

]
=
−→
j

}
Note that B1 = {−→u1,−→v1} is also a basis of R2

A is the standard matrix of T , it is in fact the matrix of T through the canonical basis of B

a vector −→u ∈
−→
R2 has coordinates

[
x

y

]
with respect to B.

The coordinates of T (−→u ) with respect to B is A

[
x

y

]
= A

(
P

[
x1

y1

])

Let

[
x1

y1

]
be the coordinates of −→u with respect to B1

−→us = −→xi +−→yj = x1
−→u1 + y1

−→v1

⇒

[
x

y

]
= P

[
x1

y1

]

P−1AP

[
x1

y1

]
= D

[
x1

y1

]
=

[
x1

0

]
D is the matrix of the linear transformation T through the basis B1

3.2 Vector Spaces

Let K be a field (K = R, K = C) Let V be a nonempty set V is equipped with 2 operations

Additions if −→u ∈ −→v ,−→v ∈ V , then sum −→u +−→v is defined

Scalar Multiplication if −→u ∈ V, α ∈ R, α−→u is defined

V is called a vector space (over K) if the following properties hold:
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A1 whenever −→u ,−→v ∈ V,−→u +−→v ∈ V

A2 whenever −→u ,−→v ∈ V,−→u +−→v = −→v +−→u

A3 whenever −→u ,−→v ,−→w ∈ V, (−→u +−→v ) +−→w = −→u + (−→v +−→w )

A4 there exists a special vector in V called the zero vector, denoted by
−→
0 such that

whenever −→u ∈ V , −→u +
−→
0 =

−→
0 +−→u = −→u

A5 Given −→u ∈ V , there exists −→w ∈ V such that −→u +−→w = −→w +−→u =
−→
0

−→w is denoted by −−→u

S1 ∀α ∈ K, ∀−→u ∈ V, αvecu ∈ V

S2 1 · −→u = −→u , 1 ∈ K(K = R),−→u ∈ V

S3 whenever α, β ∈ K,−→u ∈ V, α (β−→u ) = (αβ)−→u

S4 whenever α, β ∈ K,−→u ∈ V, (α + β)−→u = α−→u + β−→u

S5 whenever α ∈ K,−→u ,−→v ∈ V , α (−→u +−→v ) = α−→u + α−→v s

Examples

1. V = Rn is a vector space over K = R

2. let Mp×q be the set of all p× q matrices

Mp×q is a vector space over R

3. Let P be the set of all polynomials over R
P1, P2 ∈ P , (P1 + P2) (x) = P1(x) + P2(x) ∀x ∈ R
If α ∈ R ∈ K, (αP ) (x) = αP (x) ∀x ∈ R

4. Let 0 be the function such that 0(x) = 0 ∀x

4 2018/01/18

4.1 Vector Spaces

Examples

Let D be a subset of R (D can be an interval for example)

Let F (D) be the set of all real valued functions defined on D

For f, g ∈ F (D), α, β ∈ R, 0 : D → R
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• f + g : D → R

• (f + g)(x) = f(x) + g(x)

• (αf)(x) = α · f(x)

• f + g = g + f

• (f + g) + h = f + (g + h)

• 0(x) = 0

• f + 0 = f

• f + (−f) = 0

• 1 · f = f

• (α + β)f(x) = αf(x) + βf(x) = (αf + βf)(x)

Note that if we set D = N
F (N) = set of all real-valued sequences

4.2 Proposition

Let (V,+, ·) be a vector space over K

1. The zero vector
−→
0 in V is unique

2. Given −→u ∈ V , the vector
−→−u is unique

3. If α−→u = 0 then α = 0 or −→u =
−→
0

4.
−→−u = (−1)−→u

Proof

1. Let
−→
01 and

−→
02 be two vectors such that


−→u +

−→
01 =

−→
01 +−→u = −→u ∀−→u

−→u +
−→
02 =

−→
02 +−→u = −→u ∀−→u

(1)

It follows that
−→
01 =

−→
01 +

−→
02 =

−→
02
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2. Let −→u ∈ V and let −→w1 and −→w2 be two vectors such that
−→u +−→w1 =

−→
0

−→u +−→w2 =
−→
0

−→u +−→w1 =
−→
0

−→w2 + (−→u +−→w1) = −→w2 +
−→
0

(−→w2 +−→u ) +−→w1 = −→w2 associativity

0 +−→w1 = −→w2

−→w1 = −→w2

(2)

3. Suppose α−→u = 0 If α 6= 0

1

α
∈ K K = R

1

α
(α−→u ) =

1

α

−→
0 =

−→
0

(
1

α
α)−→u =

−→
0 ie1 · −→u = −→u = 0

(3)

4. −−→u = (−1)−→u

1 + (−1) = 0

(1 + (−1))−→u = 0−→u = −→u

1−→u + (−1)−→u =
−→
0

−→u + (−1)−→u =
−→
0

∴ (−1)−→u =
−→−u

(4)

4.3 Subspaces

Let (V,+·) be a vector space over K

Let E be a subset of V (E ⊆ V )

(E,+·) is called a subspace of (V,+, ·)
if (E,+, ·) is a vector space over K.

Proposition

E is a subspace of V if the following properties hold:

1.
−→
0 ∈ E
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2. Whenever −→u ,−→v ∈ E −→u +−→v ∈ E

3. Whenever −→u ∈ E,α ∈ K α−→u ∈ E

Notice that E ⊆ V is a subspace of V iff E is nonempty and α−→u + β−→v ∈ E whenever
−→u ,−→v ∈ E,α, β ∈ K
Examples

1. Let C([0, 1]) be the set of all continuous functions on [0, 1]

C([0, 1]) ⊆ F ([0, 1])← vector space

The function f : [0, 1]→ R
f ∈ C([0, 1])(nonemptiness)

If f and g are continuous on [0, 1], so if f + g, as well as αf ∀α
C[0, 1] is a subspace of F ([0, 1])

2. Let E =
{
A ∈M2×2 | A = AT

}
Note that I2 =

(
1 0

0 1

)
∈ E

whenever A,B ∈ E, (A+B)T = AT +BT = A+B

A+B ∈ E
Also (αA)T = αAT = αA

ie αA ∈ E
E is a subspace of M2×2

5 2018/01/23

5.1 Subspaces

Examples

1. Let E = {p = P3, such that p(1) = 2}
E is a nonempty subset of P3(p(x) = 2x ∈ E). But E is neither stable under addition

nor stable under scalar multiplication.

Ex p1(x) = 2x ∈ E, but (4p1)(x) = 8x /∈ E.

∴ E is not a subspace
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2. Let E = {p ∈ P3 | p(0) ≥ 0}
The zero polynomial (0) ∈ E
let p1 ∈ E, p2 ∈ E, (p1+2)(0) = p1(0) + p2(0) ≥ 0

p1 + p2 ∈ E
However, E is not stable under scalar multiplication.

Ex p(x) = x+ 1 ∈ E ← p(0) = 1 ≥ 0

if α < 0, then αp(0) = α < 0→ αp /∈ E

3. If A is a n×m matrix

Null(A) = {x ∈ Rm | AX = 0}
Null(A) is a subspace of Rm

Proof

X = 0 ∈ Null(A) since A0 = 0 Let X1, X2 ∈ Null(A)

A(X1 +X2) = AX1 + AX2 = 0 + 0 = 0

If X ∈ Null(A), α ∈ R
αX ∈ Null(A) bc

A(αX) = α(AX) = α0 = 0

Let (V,+, ·) be a vector space on R.

Let −→u1,−→u2, ...,−→un be n vector in V

Proposition

The subset E ⊆ V of all linear combinations (lc) of −→u1,−→u2, ...,−→un is a subspace of V , and is

denoted

E = span {−→u1,−→u2, ...,−→un}
Proof

1.
−→
0 ∈ E bc

−→
0 = 0−→u1 + 0−→u2 + ...+ 0−→un

2. E is stable under addition

Let −→v =
∑n

i=1 αi
−→ui ∈ E

−→w =
∑n

i=1 βi
−→u1 ∈ E

−→v +−→w =
∑n

i=1(αi + βi)
−→ui ∈ E

3. E is stable under scalar multiplication
−→u =

∑n
i=1 αi

−→ui ∈ E and β ∈ R
β−→u = β(

∑n
i=1 αi

−→ui ) =
∑n

i=1(βαi)
−→ui ∈ E

Examples
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MATH 223 6 2018/01/25 Allan Wang

1. Let A be a n×m matrix and C1, C2, ..., Cm are the columns of A (each column ∈ Rn).

span {C1, C2, ..., Cm} is a vector subspace of Rn, called the column space of A and

denoted Col(A)n.

Similarly, the row space of A is Row(A) = Col(AT ) is a subspace of Rm.

2. E = P3

p ∈ P3), p(x) = ax3 + bx2 + cx+ d

P3 = span {x3, x2, x, 1}

3. E = {p ∈ P3 | p(2) = 0} is a subspace of P3

If p ∈ E, p(x) = 0

ie p(x) = (x− 2)q(x) where q(x) ∈ P2

p(x) = (x− 2)(ax2 + bx+ c) = ax2(x− 2) + bx(x− 2) + c(x− 2) a, b, c ∈ R
E = span {x2(x− 2), x(x− 2), x− 2}
p ∈ P3, p(x) = sum3

k=0
f (k)(2)
k!

(x− 2)k

if p ∈ E, p(2) = 0

p(x) =
3∑

k=0

p(k)(2)

k!
(x− 2)k

=
p(1)(2)

1!
(x− 2) +

p(2)(2)

2!
(x− 2)2 +

p(3)(2)

3!
(x− 2)3

(5)

Proposition

Let E be a subspace of V

Let F1 = {−→u1,−→u2, ...,−→un} be a subset of vectors in V

F2 = {−→v1 ,−→v2 , ...,−→vn} be a subset of vectors in V

F1 and F2 are both spanning sets of the same subspace E of V iff every vector in F1 is a lc

of vectors in F2 and every vector in F2 is a lc of vectors in F1.

6 2018/01/25

Wasn’t there
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7 2018/01/30

7.1 Linear Independence

7.1.1 Properties

• If a subset −→u1,−→u2, ...,−→uk of vectors in V contains the zero vector
(−→ui =

−→
0 for some i

)
,

then it is linearly dependent

• If F = {−→u1,−→u2, ...,−→uk} is linearly independent, then any subset of F is linearly depen-

dent

\\TODO update

• if F = −→u1,−→u2, ...,−→un is linearly independent, and {−→u1,−→u2, ...,−→un,−−→un+1} is linearly inde-

pendent, then −−→un+1 ∈ span {−→u1,−→u2, ...,−→un}

Proof

1. Without loss of generality, −→u1 =
−→
0

Note that 2−→u1 + 0−→u2 + 0−→u3 + ...+ 0−→un =
−→
0

As there is a nonzero coefficient, there must be linear dependence.

2. Let F = {−→u1,−→u2, ...,−→uk} be linearly independent.

Let F1 be a subset of F containing k vectors, k ≤ n∑n
i=1 αi

−→ui =
−→
0 ⇒

∑k
i=1 αi

−→ui + 0−−→ui+1 + 0−−→ui+2 + ...0−→un =
−→
0

Since F is linearly independent, we must have α1 = α2 = ... = αk = 0

• Assume that F = {−→u1,−→u2, ...,−→uk} is linearly independent and {−→u1,−→u2, ...,−→un,−−→un+1} is

linearly dependent

There exists a finite sequence α1, α2, ..., αn, αn+1, where not all values are zeroes, such

that

α1
−→u1 + α2

−→u2 + ...+ αn
−→un + αn+1

−−→un+1 =
−→
0 (∗)

Claim αn+1 6= 0

Assume αn+1 = 0

αn+1 = 0 and (∗) yields

α1
−→u1 + α2

−→u2 + ...+ αn
−→un =

−→
0

which implies α1 = α2 = ... = αn = 0 (since F is linearly independent). That is a

contraction, therefore αn+1 6= 0
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(∗) can be rewritten as αn+1
−−→un+1 = α1

−→u1 + α2
−→u2 + ...+ αn

−→un =
∑n

i=1 αi
−→ui

−−→un+1 =
∑n

i=1−
(

αi

αn+1

)−→ui ie −−→un+1 ∈ span {−→u1,−→u2, ...,−→un}

Proposition

If F = {−→u1,−→u2, ...,−→uk} is linearly dependent, then one of the −→ui can be written as the linear

combination of the others.

Basis

Let V be a vector apces and E be a subspace of V . A basis of E is a family F = {−→u1,−→u2, ...,−→uk}
of vectors in E such that

1. E = span {−→u1,−→u2, ...,−→un}

2. F = {−→u1,−→u2, ...,−→uk} is linearly independent

Examples

1. V = R3 A basis of V is


1

0

0

 ,
0

1

0

 ,
0

0

1




2. Let V be any vector space

E =
{−→

0
}

does not have a basis because the only spanning set if
{−→

0
}

which is linearly

dependent

Lemma

Let E be a subspace of V

Let F1 = {−→u1,−→u2, ...,−→uk} be a spanning set of E

Let F2 = {−→v1 ,−→v2 , ...,−→vk} be a linearly independent subset of E

then m ≥ n

Proof

By contradiction

Assume that n > m

[−→v1 ,−→v2 , ...,−→vn] = [−→u1,−→u2, ...,−→un]AX

AX = 0

Fn j = 1, 2, ..., n
−→vj =

∑m
i=1 aij

−→ui (because F1 is a spanning set of E)

Let A = (aij)1≤i≤m1≤j≤n

Page 12 of 50
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∑m
j=1 xj

−→vj =
∑m

i=1

(∑n
j=1 αijxj

)−→ui (∗)
A is m× n and n > m

Therefore, the homogeneous system AX = 0 has a non trivial solution.

Using the components of the nontrivial solution in (∗), we have
∑n

j=1 xj
−→vj =

−→
0 , but

not all xj are equal to 0.

ie F2 is linearly dependent, which is a contradiction

Theorem

Let V be a vector space and E be a subspace of V such that E 6=
{−→

0
}

All basis of E have the same number k of vectors; k is called the dimension of E

Notation dim(E) = k

Proof

Let B1 = {setu1touk} and B2 = {setv1tovl} be two basis of E. We have to prove that l = k

B1 is a spanning set of E

B2 is linearly independent in E

}
⇒ k ≥ l

B2 is a spanning set of E

B1 is linearly independent in E

}
⇒ l ≥ k

k = l

Remark

E =
{−→

0
}

dim(E) = 0 dim(R3) = 3

Examples

1. Pn = set of all polynomials of order ≤ n

We have seen that B = {1, x, x2, ..., xn} is a spanning set of Pn and is also linearly

independent

B is a basis of Pn

therefore dim(Pn) = n+ 1

2. M2×2 = set of all 2× 2 matrices

E1 =

(
1 0

0 0

)
E2 =

(
0 0

1 0

)
E1 =

(
0 0

0 1

)
E1 =

(
0 1

0 0

)
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{E1, E2, E3, E4} is a basis of M2×2

M =

(
a c

b d

)
= aE1 + bE2 + dE3 + cE4

dim(M2×2) = 2× 2 = 4

8 2018/02/01

8.1 Basis & Dimensions

Examples

1. let U =
{
M ∈M2×2 |M = MT

}
It is clear that U is a subspace of M2×2

Basis of U

Let M =

(
a c

b d

)
MT =

(
a b

c d

)
M = MT ⇔ b = c

M ∈ U ⇔M =

(
a b

b d

)

M = a

(
1 0

0 0

)
+ b

(
0 1

1 0

)
+ d

(
0 0

0 1

)
Also {A1, A2, A3} is linearly independent.

∴ {A1, A2, A3} is a basis of U , ie dim(U) = 3

Lemma

(Fundamental)

If {−→u1,−→u2, ...,−→un} is a spanning set of U (a subspace of V ) and {−→v1 ,−→v2 , ...,−→vk} is linearly

independent in U then k ≤ n.

Proposition

Let U be a subspace of V and dim(U) = n

1. Every spanning set of U has at least n elements

2. Every spanning set of U which contains n vectors is a basis of U

Proof
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1. Let {−→u1,−→u2, ...,−→un} = B be a basis of U

Let F = {−→v1 ,−→v2 , ...,−→vm} be a spanning set of U

Note that B is linearly independent, by the fundamental lemma m ≥ n

2. Let F = {−→v1 ,−→v2 , ...,−→vn} be a spanning set of U

Claim F is also linearly dependent

Suppose otherwise; one of the −→vi is a lc of the other ones.

WLOG −→vn is a lc of −→v1 ,−→v2 , ...,−−→vn−1
U = span {−→v1 ,−→v2 , ...,−→vn} = span {−→v1 ,−→v2 , ...,−−→vn−1}
Thus, a contradiction as every spanning set must have at least n elements. Therefore,

F is linearly independent, and a basis of U .

Examples

1. T or F: V = span {x2, x+ 1}
False, dim(P2) = 3, and every spanning set must have at least 3 elements.

2. T or F: V = span

{
x2

P1

, x+ 1
P2

, x2 − x− 1
P3

, 2x+ 3
P4

}
Note that x2 − x− 1 is a lc of x2 and x+ 1

Let p(x) = ax2 + bx+ c ∈ P2

Can we find x1, x2, x3 ∈ R st. p = x1p1 + x2p2 + x3p4 (*)

(*) implies


x2 + 3x3 = c

x2 + 2x3 = b

x1 = a

(6)

AX =

ab
c

 X =

x1x2
x3


A =

1 0 0

0 1 2

0 1 3


A is invertible, thus

X = A−1

ab
c

 ie {P1, P2, P4} is a spanning set of P2
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Proposition

Let U be a subspace of V and dim(U) = n

1. Every linearly independent subset of U has at most n vectors

2. Any linearly independent subset of U which contains n elements is a basis of U

Proof

1. Use the fundamental lemma

2. Let B = {−→u1,−→u2, ...,−→un} is a basis of U and F = {−→v1 ,−→v2 , ...,−→vn} a linearly independent

set in U

3. Claim F is also a spanning set o U

Proof by contradiction
−→w is not a lc of −→v1 ,−→v2 , ...,−→vn then {−→v1 ,−→v2 , ...,−→vn,−→w } is linearly independent

α1
−→v1 + α2

−→v2 + ...+ αk
−→vk =

−→
0

This is a linearly independent subset with n+ 1 elements, which is a contradiction

Proposition

Let U and W be two subspaces of a vector space V

1. If U ⊆ W then dim(U) ≤ dim(W )

2. If U ⊆ W and dim(U) = dim(W ) then U = W Proof

(a) A basis of U is a linearly independent set of vectors in W , thus has at most

dim(W ) vectors

(b) U ⊆ W dim(U) = dim(W ) = n

Let B = {−→u1,−→u2, ...,−→un} be a basis of U ; B is a linearly independent set of vectors

in W and B has n = dim(W ) vectors. By the previous proposition, B is a basis

of W .

∴ W = span {−→u1,−→u2, ...,−→un} = U

Examples

1. U = {f ∈ F (N) | f(n+ 2) = 3f(n+ 1)− 2f(n)}
f1(n) = 1 (1, 1, 1, ...)

f2(n) = 2n (20, 21, 22, ...)
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9 2018/02/06

Example

U = {f ∈ F (N) | f(n+ 2)− 3f(n+ 1) + 2f(n) = 0}
Note that U is the set of all sequences {xn}n≥0 such that xn+2 − 3xn+1 + 2xn = 0

Note that if f(n) = rn ∈ U , then r = 1 or r = 2

f1(n) = 1 ∀n is an element of U

f2(n) = 2n ∀n
{f1, f2} is a basis of U

If f ∈ U and f(0) = f(1) = 0, using the relation f(n+ 2)− 3f(n+ 1) + 2f(n) = 0, we can

deduce that f(n) = 0 ∀n.

{f1, f2} is linearly independent

Suppose that αf1 + βf2 = 0

\\TODO

{f1, f2} is a spanning set of U

Let f ∈ U
∃a, b ∈ R such that af1(0) + bf2(0) = f(0)

af1(1) + bf2(1) = f(1)
(7)

⇔ a+ b = f(0)

a+ 2b = f(1)
(8)

b = f(1)− f(0)

a = 2f(0)− f(1)

Let g(n) = f(n)− (2f(0)− f(1))f1(n)− (f(1)− f(0))f2(n)

g ∈ U and g(0) = 0, g(1) = 0

∴ using (*) g(n) = 0 ∀n
ie f(n) = (2f(0)− f(1))f1(n) + (f(0)− f(1))f2(n)

Any sequence {xn}n such that xn+2 = 3xn+1 + 2xn = 0 can be written as

xn = (2x0 − x1) + (x0 − x1)2n
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Exercises

Find a basis for each of the following subspaces

1. U = {f ∈ F (N) | f(n+ 2)− 4f(n+ 1) + 4f(n) = 0}

2. U = {f ∈ F (N) | f(n+ 2)− 5f(n+ 1) + 6f(n) = 0}

9.1 Direct Sum

Let V be a vector space and E,F are 2 subspaces of V

E + F = {−→u = −→u1 +−→u2,−→u1 ∈ E,−→u2 ∈ F} ⊆ V

Examples

1. V = R2

E = span

{[
1

0

]
= i

}
F = span

{[
0

1

]
= j

}
E + F = R2

2. V = R3

E = span

i =

1

0

0

 , j =

0

1

0


 xy-plane

F = span

j =

0

1

0

 , k =

0

0

1


 yz-plane

Definition

Let V be a vector space and E and F be 2 subspaces of V

V is said to be the direct sum of E and F

(Notation: = V = E ⊕ F )

If V = E + F and E ∩ F =
{−→

0
}

Proposition

If V = E1 ⊕ E2, then every vector −→u ∈ V can be written uniquely as −→u = −→u1 + −→u2, where
−→u1 ∈ E1,

−→u2,∈ E2
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Proof

−→u = −→u1 +−→u2 −→u1,−→v1 ∈ E1

= −→v1 +−→v2 −→u2 +−→v2 =∈ E2

−→u1 +−→u2 = −→v1 +−→v2
−→w = −→u1 −−→v1

∈E1

= −→v2 −−→u2
∈E2

=
−→
0

(9)

−→w ∈ E1,
−→w ∈ E2,

−→w ∈ E1 ∩ E2

ie −→w =
−→
0

Theorem

Let V be a finite dimensional vector space

Assume that V = E1 ⊕ E2

then dim(V ) = dim(E1) + dim(E2)

More precisely, if B1 = {−→u1,−→u2, ...,−→un} is a basis of E1 and B2 = {−→v1 ,−→v2 , ...,−→vm} is a basis of

E2, then B = B1 ∪B2 is a basis of V

Proof

∵ V = E1 ⊕ E2, V = E1 + E2

∴ B is a spanning set of V

−→u ∈ V
−→u = −→w1

∈E1

+ −→w2

∈E2

=
n∑
i=1

α1
−→ui +

m∑
i=1

βi +−→vi

(10)

B is linearly independent
(

bc E1 ∩ E2 =
{−→

0
})

n∑
i=1

αi
−→ui +

m∑
i=1

βi
−→vi =

−→
0 ⇔

n∑
i=1

αi
−→ui = −

m∑
i=1

βi
−→vi = −→w

−→w ∈ E1 ∩ E2 =
{−→

0
}

−→w =
−→
0

(11)
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n∑
i=1

αi
−→ui =

−→
0 ⇒ αi = 0 ∀i = 1, 2, ..., n B1 is a basis

m∑
i=1

βi
−→vi =

−→
0 ⇒ βi = 0 ∀i = 1, 2, ...,m B2 is a basis

Examples

1. E = span {2− x, 1 + x2} Find F such that

E ⊕ F = P2

∵ {2− x, 1 + x2} is linearly independent

∴ dim(E) = 2

if P2 = E ⊕ F
3 = dim(P2) = dim(E) + dim(F )

dim(F ) = 1

Let p(x) = 1 ∀x
p ∈ P2, but p /∈ E
F = span {p}
P2 = F ⊕ E

2. Let V = M2×2

E =
{
M ∈M2×2 |M = MT

}
Find F such that E ⊕ F = M2×2

M1 = A+ AT

MT
1 = AT +

(
AT
)T

= AT + A = M1

M2 = A− AT

MT
2 = AT − A = −M2

E =
{
M ∈Mn×n |M = MT

}
F =

{
M ∈Mn×n |MT = −M

}
M ∈ E ∩ F ⇒M = 0

(12)

Let A ∈Mn×n

A =
1

2
(A+ AT )

∈E

+
1

2
(A− AT )

∈F
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Mn×n = E ⊕ F

10 2018/02/08

S =
{
M ∈Mn×n |MT = M

}
A =

{
M ∈Mn×n |MT = −M

}

Mn×n = S ⊕ A

dim(A) = n2−n
2

dim(S) = n2+n
2

(13)

dim(E ⊕ F ) = dim(E) + dim(F )

If dim(E + F ) = dim(E) + dim(F ) then it is a direct sum.

Exercise

dim(E + F ) = dim(E) + dim(F )− dim(E ∩ F )

(E ∩ F ) is a subspace of V whenever E and F are subspaces of V .

10.1 Coordinates

Let V be a vector space such that dimm(V ) = n

Let B = {−→u1,−→u2, ...,−→un} be a basis of V .

Given −→w in V , −→w can be written uniquely as a linear combination of vectors in B.

ie −→w =
∑n

i=1 xi
−→ui

Therefore the column-matrix


x1

x2
...

xn

 uniquely identifies −→w .


x1

x2
...

xn

 is called the coordinate-vector of −→w relative to the basis B.

Examples

1. M2×2 B =

{
E1 =

[
1 0

0 0

]
, E2 =

[
0 0

1 0

]
, E3 =

[
0 0

0 1

]
, E4 =

[
0 1

0 0

]}

M =

[
1 3

3 2

]
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U =
{
A ∈M×2 | AT = A

}
A basis of U is given by B1 =

{
A1 =

[
1 0

0 0

]
, A2 =

[
0 1

1 0

]
, A3 =

[
0 0

0 1

]}

Coordinate vector of M relative to B

M = E1 + 3E2 + 2E3 + 3E4 ↔


1

3

2

3


Coordinate vector of M relative to B1

M = A1 + 3A2 + 2A3 ↔

1

3

2

 (Note that the order for which you write the basis is

important)

2. Find a basis B of U = span

1 + x
P1

, 3 + x2

P2

, (x− 1)2

P3

 and find the coordinate vector

of p(x) = (x− 1)2 relative to B.

{P1, P2, P3} is a spanning of U .

Linear Independence

α1P1 + α2P2 + α3P3 = 0

A
3×3

α1

α2

α3

 = 0
3×1

where A =

1 3 1

1 0 −2

0 1 1

 
1 0 −2

0 1 1

0 0 0


P3 = −2P1 + P2

{P1, P2} is linearly independent

B = {P1, P2} is a basis of U and coordinates of P = P3 relative to B is

[
−2

1

]
Remark

If V is a n-dimensional vector space over R
B = {−→u1,−→u2, ...,−→un} is a basis of V

The map T : V → Rn, T (U) =


x1

x2
...

xn



Page 22 of 50



MATH 223 10 2018/02/08 Allan Wang

where


x1

x2
...

xn

 is the coordinate-vector of −→u relative to B

is an isomorphism −→u ↔


x1

x2
...

xn



10.2 Linear Transformations (Mapping)

Definition

Let V and W be two vector spaces over R
A map (of function) T : V → W is called a linear transformation of the following properties

hold.

1. T (−→u1 +−→u2) = T (−→u1) + T (−→u2) whenever −→u1,−→u2 ∈ V

2. T (α−→u ) = αT (−→u ) whenever −→u ∈ V α ∈ R

Remark

T : V → W is a linear transformation iff T (α1
−→u1 + α2

−→u2) = α1T (−→u1) + α2T (−→u2) whenever
−→u1,−→u2 ∈ V α1, α2 ∈ R
or equivalently: T (

∑n
i=1 αi

−→ui ) =
∑n

i=1 αiT (−→ui )
whenever αi i = 1, ..., n ∈ R −→ui i = 1, ..., n ∈ V
Examples

1.
V = P

T : V → R

T (p) = [p(0)]2

p1(x) = x− 1

p2(x) = x+ 1

T (p1) = (p1(0))2 = 1

T (p2) = 1

T (p1 + p2) = 0

(14)
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T is not a linear transformation

2. The coordinate-map dim(V ) = n and B = {−→u1,−→u2, ...,−→un} is a basis of V

The map T : V → Rn

T (−→u ) =


x1

x2

· · ·
xn

← coordinates of −→u relative to B

T is a linear transformation

3. T : Rp → Rq

T (X)

q×1

= A
q×p

X
p×1

, where A is a q × p matrix, is a linear transformation

4. T : P2 → P2

T (p)(x) = xp′(x) +
∫ 1

0
p(x)dx

T (p1+p2)(x) = x(p′1(x)+p′2(x))+
∫ 1

0
(p1(x)+p2(x))dx = xp′1(x)+

∫ 1

0
p1(x)dx+xp′2(x)+∫ 1

0
p2(x)dx = T (p1)(x) + T (p2)(x)

T (αp)(x) = αxp′(x) + α
∫ 1

0
p(x)dx = αT (p)(x)

Proposition

Let T : V → W be a linear transformation

1. T (
−→
OV ) =

−−→
OW

2. Let E be a subspace of V

T (E) = {T (−→u ), where −→u ∈ E} is a subspace of W

3. Let F be a subspace of W

T−1(F ) = {−→u ∈ V | T (−→u ) ∈ F} is a subspace of V

Proof

(a)
−→u ∈ V

−→u +
−→
OV = −→u

T (−→u +
−→
OV ) = T (−→u )

T (−→u ) + T (
−→
OV ) = T (−→u )

(15)

∴ T (
−→
OV ) =

−−→
OW
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(b) Let E ⊆ V be a subspace of V

T (E) = {T (−→u ), where −→u ∈ E} (reverse in)
−−→
OW−→

OV ∈ E, ∴
−−→
OW = T (

−→
OV ) ∈ T (E)

Let −→w1,
−→w2 ∈ T (E); α1, α2 ∈ R

−→w1 = T (−→u1) where −→u1 ∈ E
−→w2 = T (−→u2) where −→u2 ∈ E
α1
−→w1 + α2

−→w2 = α1T (−→u1) + α2T (−→u2) = T (α1
−→u1 + α2

−→u2) = T (−→u )

where −→u = α1
−→u1 + α2

−→u2 ∈ E
ie α1

−→w1 + α2
−→w2 ∈ T (E)

(c)

T−1(F ) = {−→u ∈ V | T (−→u ) ∈ F}

Let −→u1,−→u2 ∈ T−1(F ) α1, α2 ∈ R

T (−→u1) ∈ F, T (−→u2) ∈ F

α1
−→u1 + α2

−→u2 ∈ T−1(F )

T (α1
−→u1 + α2

−→u2) = α1 T (−→u1)
∈F

+α2 T (−→u2)
∈F

∈ F

α1
−→u1 + α2

−→u2 ∈ T−1(F )

(16)

11 2018/02/13

(From someone else’s notes)

11.1 Linear Transformations

Proposition

T : V → W is a linear transformation

1. If E is a subspace of V then T (E) = {T (−→u ) where −→u ∈ E} is a subspace of W .

2. If F is a subspace of W then T−1(F ) = {−→u ∈ V s.t. T (−→u ) ∈ F} is a subspace of V

Examples
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1.

T : R3 → R2

T

xy
z

 =

(
x

z

)

=

(
1 0 0

0 0 1

)
2×3

xy
z


3×1

will be a linear transformation because it can be written in this format

(projection onto xz plane)

E = span


1

0

0

 ,
0

1

0


 (xy plane)

(17)

if −→u ∈ E then −→u =

ab
0

 and T (−→u ) =

[
a

0

]

T (E) = span

{[
1

0

]}
→ x axis is in R2

2. Let F = span

{[
1

0

]}
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T−1(F ) =

−→u =

xy
z

 such that T (−→u ) ∈ F


T (−→u ) =

(
x

z

)
= t

(
1

1

)
t ∈ R

x = t, z = t, y is arbitrary → y = s

T−1(F ) =

−→u =

ts
t

 | t, s ∈ R


T−1(F ) = span


1

0

1

 ,
0

1

0




(18)

T−1(F ) is a subspace, T−1(F ) cannot be empty,
−→
0 ∈ T−1(F )

Particular Cases: Ker(T ) and Im(T )

Let T : V → W be a linear transformation

1. E = V is a trivial subspace of V

From previous proposition, T (V ) is a subspace of W . It is called the image of V

through T , denoted Im(T )

2. F =
{−→

0W

}
is also a trivial subspace of W . Using the previous proposition T−1

({−→
0W

})
is a subspace of V called the kernel of T , denoted Ker(T ).

Ker(T ) =
{−→u ∈ V s.t. T (−→u ) =

−→
0W

}
Remark

T : V → W and {−→u1,−→u2, ...,−→un, ...} is a spanning set of V

then {T (−→u1), T (−→u2), ..., T (−→un), ...} is a spanning set of T (V ) = Im(T )

Proof

Let −→w ∈ Im(T ) (≡ T (V )), then ∃−→u ∈ V s.t. −→w = T (−→u ),−→u =
∑n

i=1 αi
−→ui ,−→w = T (−→u ) =

T (
∑n

i=1 αi
−→ui ) =

∑n
i=1 αiT (−→ui ) (Linear combination of T (−→ui ))

Examples

1. T : V = Rp → W = Rq

T (X) = AX
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A spanning set of Im(T ) is given by T (−→ui ) where −→ui =


0

0

1

0

0


p×1

← ith position

T (−→ui ) = A−→ui = ith column of A

Im(T ) = Col(A)

Ker(T ) = {x | AX = 0} = Null(A)

2. T : V = P2 → W = R
T (p) =

∫ 1

0
p(x)dx is this a linear transformation?

T is a linear transformation

{1, , x2} is a spanning set of V

p1(x) = 1, p2(x) = x, p3(x) = x2

T (p1) = 1, T (p2) = 1
2
, T (p3) = 1

3
→ fractions came from doing transformations

Im(T ) = span

{
1,

1

2
,
1

3

}
⊆ R

= span {1} = R
(19)

T is onto because the whole W is covered by Im(T )

Ker(T ) =
{
p ∈ P2 |

∫ 1

0
p(x)dx = 0

}
p(x) = ax2 + bx+ c

∫ 1

0
p(x)dx⇒ a

3
+ b

2
− c = 0

Ker(T ) = span
{
x− 1

2
, x2 − 1

3

}
a
3

+ b
2

+ c = 0 c = −a
3
− b

2

p(x) = ax2 + bx− a
3
− b

2
= a(x2 − 1

3
) + b(x− 1

2
)

3. T : V = M2×2 → W = M2×2

T (M
2×2

) = A
2×2

M
2×2

where A =

(
1 2

1 2

)
Is this a linear transformation? Yes

(if M =

[
1 0

0 1

]
, AM =

[
t

[
1

1

]
, s

[
1

1

]]
)
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What is the basis of M2×2? E1 =

[
1 0

0 0

]
, E2 =

[
0 0

1 0

]
, E3 =

[
0 0

0 1

]
, E4 =

[
0 1

0 0

]
{E1, E2, E3, E4} is a basis of M2×2

T (E1) =

[
1 0

1 0

]
, T (E2) =

[
2 0

2 0

]
, T (E3) =

[
0 2

0 2

]
, T (E4) =

[
0 1

0 1

]

Im(T ) = span

{[
1 0

1 0

]
,

[
0 1

0 1

]}
because clearly T (E2) is twice T (E1) & T (E3) is

twice T (E4)

Ker(T ) = {M2×2 | AM = 0}
M = [x1 | x2]⇒ AM = [Ax1 | Ax2] = 0

Ax1 = 0 x1 = t [2− 1] t ∈ R
Ax2 = 0 x2 = s [2− 1] s ∈ R

M =

[
t s

−t −s

]
t, s ∈ R

Ker(T ) = span

{(
2 0

−1 0

)
,

(
0 2

0 −1

)}

12 2018/02/15

Definition

(one-to-one and onto linear transformations)

1. T : V → W , is said to be one-to-one (or injective) if, whenever T (−→u1) = T (−→u2), we

have −→u1 = −→u2

2. T : V → W is said to be onto (or surjective) if W = J?m(T )

Remark

T : V → W is onto iff there is a spanning set {−→u1,−→u2, ...,−→un, ...} of V such that {T (−→u1), T (−→u2), ..., T (−→un), ...}
is a spanning set of W

Proposition

T : V → W , linear transformation is one-to-one iff Ker(T ) =
{−→

0V

}
Proof
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(⇒) Assume T is one-to-one

Recall Ker(T ) =
{−→u ∈ v | T (−→u ) =

−→
0W

}
Let −→u ∈ Ker(T ), T (−→u ) =

−→
0W = T (

−→
0V )

∵ T is one-to-one, ∴ −→u =
−→
0V

(⇐) Assume that Ker(T ) =
{−→

0V

}
Let us prove that T is one-to-one

Let −→u1,−→u2 ∈ V , such that

T (−→u1) = T (−→u2)⇒

T (−→u1 −−→u2) =
−→
0W

ie −→u1 −−→u2 ∈ Ker(T ) =
{−→

0V

}
−→u1 −−→u2 =

−→
0V

ie −→u1 = −→u2

(20)

Examples

1. T : P2 → P3

T (p)(x) =

∫ x

0

p(t)dt

Ker(T ) = {p | T (p) = 0}

T (p)(x) = 0 ∀x
d

dx
(T (p)(x)) = 0 ie p(x) = 0 ∀x (By Fundamental theorem of calculus)

Ker(T ) = {0} ie T is one-to-one

(21)

∵ T (p)(0) = 0 ∀p ∈ P2

∴ the polynomial f(x) = 1 ∀x does not belong to Im(T ), ie Im(T ) 6= P3 Exercise

Prove that Im(T ) = {p ∈ P3 | p(0) = 0}

2. T : Rn → Rm

T (X) = A
m×n

X

(a) T is one-to-one iff the homogeneous system AX = 0 has a unique solution

ie Rank(A) = n
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(b) T is onto iff Col(A) = Rm

ie Rank(A) = dim(Col(A)) = m

Remark

T : V → W

Let −→w be a fixed vector in W

Solving the equation T−→u = −→w
The set of all solutions is T−1({−→w })

(a) T−1({−→w }) can be empty (No solution)

(b) T−1({−→w }) can have only one vector if
−→w ∈ Im(T ) and T is one-to-one item T−1({−→w }) has infinitely many vectors when
−→w ∈ Im(T ) and Ker(T ) 6=

{−→
0V

}

12.1 Isomorphism

Definition

A linear transformation T : V → W is said to be an isomorphism if T is one-to-one and

onto

Examples

1. T : Rn → Rn

T (X) = A
n×n

X

T is an isomorphism iff Rank(A) = n

2. T : Mn×m →Mm×n

T (A) = AT

Recall A
n×m
∈ Ker(T )⇔ T (A) = AT = 0

m×n
A = (AT )T = ( 0

m×n
)T = 0

m×n
T is one-to-one

Let B ∈Mm×n

T is onto

T is an isomorphism
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3. The coordinate map

If V is a vector space such that dim(V ) = n and {−→u1,−→u2, ...,−→un} = B is a basis of V

The map T : V → Rn

T (−→u ) =


x1

x2
...

xn

← coordinates of −→u relative to B

is an isomorphism

Proposition

Let T : V → W be an isomorphism

The inverse transformation T−1 : W → V is a linear transformation, and is also an isomor-

phism

Proof

T ◦ T−1(−→w ) = −→w −→w ∈ W
T−1 ◦ T (−→v ) = −→v −→v ∈ V
Let −→w1,

−→w2 ∈ W , α1, α2 ∈ R

T−1(α1
−→w1 + α2

−→w2)
?
= α1T

−1(−→w1) + α2T
−1(−→w2)

T (T−1(α1
−→w1 + α2

−→w2)) = α1
−→w1 + α2

−→w2

T (α1T
−1(−→w1) + α2T

−1(−→w2)) = α1T (T−1(−→w1)) + α2T (T−1(−→w2))

= α1
−→w1 + α2

−→w2

(22)

∵ T is one-to-one

T−1(α1
−→w1 + α2

−→w2) = α1T
−1(−→w1) + α2T

−1(−→w2)

Im(T−1) = V

∵ ∀−→v ∈ V
−→v = T−1(T (−→v )) ie −→v ∈ Im(T−1)
−→w ∈ Ker(T−1) T−1(−→w ) =

−→
0V

−→w = T (T−1(−→w )) = T (
−→
0V ) =

−→
0W

Ker(T−1) =
{−→

0W

}
T−1 is one-to-one

T−1 is also an isomorphism

Exercise

Let T : V → W be an isomorphism and B = {−→u1,−→u2, ...,−→un} be a basis of V

Let −→wi = T (−→ui )
Prove that {−→w1,

−→w2, ...,
−→wn} is a basis of W
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(∴ dim(V ) = dim(W ))

Dimension Theorem

(Generalization of the Rank Theorem)

Rm → Rn A
n×m

Real(A)

dim(col(A))=dim(Im(T ))

+ dim(Null(A))

dim(Ker(T ))

= m

Theorem

Let T : V RW be a linear transformation.

Assume dim(V ) is finite

Then dim(V ) = dim(Ker(T )) + dim(Im(T ))

13 2018/02/20

\\TODO

14 2018/02/22

Midterm is on Chapter 4 & 5, and has 4 questions. Rooms will be announced tomorrow; try

to get there 10 min early.

Examples

1. Given E,F are subspaces of V , prove that E ⊕ F ⊆ V .

We already know that E + F ⊆ V , so we just need to show that E ∩ F =
{−→

0v

}
To prove equality, show that dim(V ) = dim(E) + dim(F )

2. If U is a subspace of V , W is a subspace of V , and U ∪W is a subspace of V , prove

that U ⊆ W or W ⊆ U

If U * W and W * U , take −→u ∈ U where −→u /∈ W , and −→w ∈ W where −→w /∈ U , then
−→u +−→w /∈ U ∪W

3. T ;V → W

(a) E is a subspace of V

dim(T (E)) = dim(E)− dim(Ker(T ) ∩ E)
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Define T1 : E → T (E)

dim(E) = dim(Im(T1))

=dim(T (E))

+ dim(Ker(T1))

=dim(E∩Ker(T ))

−→u ∈ Ker(T1)⇔ −→u ∈ E and T (−→u ) =
−→
0w

⇔ −→u ∈ E and −→u ∈ Ker(T )

Ker(T1) = Ker(T ) ∩ E

(23)

15 2018/03/13

(Copied from someone else’s notes)

15.1 Matrix Representation of Linear Transformation

T : V → V, dim(V ) = n

If B = {−→u1,−→u2, ...,−→un} is a basis of V ,

there exists a (unique) n× n matrix denoted [T ]B such that ∀u ∈ V
[T (−→u )]B

note1

= [T ]B [−→u ]B
note2

note 1: coordinates of T (−→u ) relative to B

note 2: coordinates of −→u relative to B

Remark

Given that B = {−→u1,−→u2, ...,−→un}, the ith column of [T ]B is [T (ui)]B

Properties

1. If T1 and T2 are linear transformations from V into V : [T1 + T2]B = [T1]B + [T2]B

∵ [(T1 + T2)(u)]B = [T1(u) + T2(u)]B

= [T1(u)]B + [T2(u)]B

= ([T1]B + [T2]B) [u]B

∴ [T1 + T2]B = [T1]B + [T2]B

(24)

2. If T : V → V is a linear transformation and α ∈ R, [αT ]B = α[T ]B
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3. Let T1 : V → V , T2 : V → V be 2 linear transformations. [T1 ◦ T2]B = [T1]B[T2]B

[T1 ◦ T2(u)] = [T1(T2(u))]B

= [T1]B[T2(u)]B

= [T1]B[T2]B[u]B

(25)

4. T : V → V is an isomorphism iff [T ]B is invertible. Moreover, [T−1]B = ([T ]B)−1

15.2 Change of Basis

T : V → V dim(V ) = n

B = {−→u1,−→u2, ...,−→un} and S = {−→v1 ,−→v2 , ...,−→vn}

Let P be the n× n matrix such that every ith column is [vi]B

If −→u ∈ V , then [u]B = P [u]S

−→u =
∑
xivi [u]S =


x1

x2
...

xn

 [u]B =
∑

i xi[vi]B = P


x1

x2
...

xn

 = P [u]S

P is the transition matrix from S to B

Let u ∈ V

[T (u)]S = P−1[T (u)]B

= P−1[T ]B[u]B

= P−1[TB]P [u]S

∴ [T ]S = P−1[T ]BP

(26)
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Example

V = P2

T (p)(n) = xp′(n)

B =

{
1
p1

, x
p2

, x2

p3

}

S =

1 + x
q1

, 2x− 1
q2

, x2 + x
q3


T (p1)(x) = 0

T (p2)(x) = x

T (p3)(x) = 2x2

[T ]B =

0 0 0

0 1 0

0 0 2



Null([T ]B) = span


1

0

0


 = Ker(T )

Ker(T ) = {tp1, t ∈ R} = span {p1}

T (q1)(x) = x =
1

3
(q1 + q2)

T (q2)(x) = 2x =
2

3
(q1 + q2)

T (q3)(x) = 2x2 + x = 2(x2 + x)− x = 2q3 −
1

3
(q1 + q2)

[T ]B =


1
3

2
3
−1

3
1
3

2
3
−1

3

0 0 2



(27)

Using the formula [T ]S = P−1[T ]BP

P =

1 = 1 0

1 2 1

0 0 1

 P−1 =


2
3

1
3
−1

3

−1
3

1
3
−1

3

0 0 1


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15.2.1 Generalization

T : V → W is a linear transformation

dim(V ) = n,B = {−→u1,−→u2, ...,−→un} is a basis of V

dim(W ) = m,S = {−→v1 ,−→v2 , ...,−→vn} be a basis of W

There exists a unique m× n matrix

[T ]B,S is called the matrix of T relative to the bases B and S such that ∀u ∈ V
[T (u)]S
m×1

= [T ]B,S
m×n

[u]B
n×1

Remark

The jth column of [T ]B,S is [T (uj)]S

Example

T : P3 → P2

T (p(n) = p′(n)

B =
{

1, x, x2, x3
}

S =

1 + x
q1

, 2x− 1
q2

, x2 + x
q3


3x2 = 3[(x2 + x)− x]

= 3q3 − 3x

= 3q3 − q1 − q2

[T ]BS =

0 2
3

2
3
−1

0 −1
3

2
3
−1

0 0 0 3



(28)

16 2018/03/15

Generalization

T : V → W

• B is a basis of V , dim(V ) = n

• S is a basis of W , dim(W ) = m
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Then there exists a unique m× n matrix

[T ]B,S such that whenever u ∈ V , [T (u)]S = [T ]B,S [u]B
Proposition

Let V1, V2, V3 be 3 vector spaces. dim(Vi) = ni and Bi is a basis of Vi (i = 1, 2, 3)

Let F : V1 → V2 and G : V2 → V3 be a linear transformation.

G ◦ F : V1 → V3 is a linear transformation such that

[G ◦ F ]B1,B3

n3×n1

= [G]B2,B3

n3×n2

[F ]B1,B2

n2×n1
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Application

VB
T−→ VB [T ]B

↑ Id ↓ Id
VS

T−→ VS [T ]S

T = Id ◦ T ◦ Id
∣∣B={−→u1,−→u2,...,−→un}
S={−→v1,−→v2,...,−→vn}

[T ]S = [Id]B,S [T ]B [Id]S,B

(29)

Note that the column of [Id]B,S is [ui]S
Therefore [Id]B,S = P , the transition matrix from B to S.

[T ]S = P [T ]B P
−1

16.1 Similar Matrices

Two n × n matrices A,B are said to be similar if there exists an invertible matrix P , such

that A = PBP−1

Remark

1. If A and B are similar, det(A) = det(B)

2. tr(A) = tr(B)

Discussed and got back midterms

17 2018/03/20

17.1 Inner Product

Review: Dot Product

u, v ∈ Rn

u · v =
∑n

i=1 uivi where u =


u1

u2
...

un

 v =


v1

v2
...

vn


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Properties

u · v = v · u

(u1 + u2) · v = u1 · v + u2 · v

(αu) · v = α(u · v)

u · u =
n∑
i=1

u2i ≥ 0

(30)

Cauchy-Schwarz Inequality

|u · v| ≤
√
u · u
√
v · v = ||u|| ||v||

If u 6= 0 and v 6= 0, then |u·v|
||u||||v|| ≤ 1 ie −1 ≤ |u·v|

||u||||v|| ≤ 1
|u·v|
||u||||v|| = cos(θ) where θ ∈ [0, π]

θ is called the angle between u and v

Definition (Inner Product)

Let V be a vector space.

An inner product on V is a function denoted 〈, 〉 : V × V → R.

(It associates to any pair (u, v) ∈ V × V as a number denoted 〈u, v〉)
Properties

1. 〈u, v〉 = 〈v, u〉 (Symmetry)

2. Whenever u1, u2, v ∈ V α1α2 ∈ R:

〈α1u1 + α2u2, v〉 = α1〈u1, v〉+ α2〈u2, v〉

3. 〈u, u〉 ≥ 0 and 〈u, u〉 = 0 iff u = 0v

Examples

1. V = Rn

〈u, v〉 = u · v =
[
u
]T

1×n

[
v
]

n×1

2. V = R2 u1 =

[
x1

y1

]
u2 =

[
x2

y2

]
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〈u1, u2〉 = x1x2 − y1y2

=
[
x1 y1

] [ x2
−y2

]

=
[
x1 y1

] [1 0

0 −1

]
A

[
x2

y2

]

=
[
u1

]T
A
[
u2

]
(31)

(a)

〈u2, u1〉 =
[
u2

]T
A
[
u1

]
〈u2, u1〉 =

[
u2

]T
A
[
u1

]
1×1

=

([
u2

]T
A
[
u1

])T
=
[
u1

]T
AT
[
u2

]
(A = AT )

=
[
u1

]T
A
[
u2

]
= 〈u1, u2〉

(32)

(b)

〈α1u1 + α2u2, v〉 =
[
α1u1 + α2u2

]T
A
[
v
]

=

(
α1

[
u1

]T
+ α2

[
u2

]T)
A
[
v
]

= α1〈u1, v〉+ α2〈u2, v〉

(33)

(c)

〈u, u〉 =
[
u
]T
A
[
u
]

= x2 − y2 if
[
u
]

=

[
x

y

]
(34)

If
[
u
]

=

[
0

1

]
, then 〈u, u〉 = −1 < 0

Therefore, 〈, 〉 is not an inner product on V = R2

3. V = R2
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〈u, v〉 =
[
u
]T
A
[
v
]

where A =

[
2 −2

−2 6

]

u1 =

[
x1

y1

]
u2 =

[
x2

y2

]
〈u1, u2〉 = 2x1x2 − 2(x1y2 + x2y1) + 6y1y2

Since A = AT , 〈u, v〉 = 〈v, u〉
It is clear that 〈α1u1 + α2u2, v〉 = α1〈u1, v〉+ α2〈u2, v〉

〈u, u〉 =
[
u
]T
A
[
u
]

if
[
u
]

=

[
x

y

]
〈u, u〉 = 2x2 − 4xy + 6y2

= 2(x2 − 2x6) + 6y2

= 2((x− y)2 − y2) + 6y2

= 2(x− y)2 + 4y2 ≥ 0

(35)

Moreover,〈u, u〉 = 0⇔

x− y = 0

y = 0
ie
[
u
]

=

[
0

0

]
(36)

17.2 Diagonalization of A

(Based on example 3 above for A =

[
2 −2

−2 6

]
)

1. Characteristic Polynomial

PA = det(A− λI2)

= det

[
2− λ −2

−2 6− λ

]
= (λ− 2)(λ− 6)− 4

= λ2 − 8λ+ 12− 4

= λ2 − 8λ+ 8

(37)
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2. Eigenvalues

λ1 = 4 + 2
√

2

λ2 = 4− 2
√

2
(38)

3. Eigenvectors

A− λ1I2 =

(
−2 + 2

√
2 −2

−2 2 + 2
√

2

)
: x1 =

[
1

−1 +
√

2

]
is an eigenvector

A− λ2I2 =

(
−2− 2

√
2 −2

−2 2− 2
√

2

)
: x2 =

[
1

−1−
√

2

]
is an eigenvector

x1 · x2 = 1 +
(
(−1)2 − (

√
2)2
)2

= 0

4. Diagonalization

A = PDP−1 =

[
1 1

−1 +
√

2 −1−
√

2

][
4− 2

√
2 0

0 4 + 2
√

2

](
1

−2
√
2

[
−1−

√
2 −1

1−
√

2 1

])

18 2018/03/22

〈u, v〉 =
[
u
]T
A
[
v
]

〈u, v〉 = 〈v, u〉 for this property to hold, we need A = AT ; ie A must be symmetric

〈u, v〉 is clearly linear in u.

The last property: 〈u, u〉 ≥ 0 and 〈u, u〉 = 0⇔ u = 0

Definition

A symmetric matrix A such that
[
u
]T
A
[
u
]
≥ 0 ∀u ∈ Rn and

[
u
]T
A
[
u
]

= 0 only for u = 0

is called a positive definite matrix

Example

In is an n× n positive definite matrix

Proposition

If A is positive definite, then 〈u, v〉 =
[
u
]T
A
[
v
]

defines an inner product on Rn

Theorem

If A is a symmetric matrix then A is diagonalizable. Moreover, there exists a matrix Q such

that Q−1 = QT and A = QDQT where D is a diagonal matrix.

Remark
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An n × n matrix, such that Q−1 = QT (or equivalently QQT = QTQ = In) is called an

orthogonal matrix.

If xi is the ith column of Q, then xTi xi = 1 and xTi xj = 0 whenever i 6= j

Example

(n = 2)

A =

[
5 1

1 5

]
PA(λ) = det(A− λI2)

= (λ− 5)2 − 1

= (λ− 6)(λ− 4)

λ1 = 6

λ2 = 4

(39)

• λ1 = 6 A− λ1I2 =

(
−1 1

1 −1

)

A− λ1I2)X = 0⇔ X = t

[
1

1

]
t

• λ2 = 4 A− λ2I2 =

(
1 1

1 1

)

A− λ2I2)X = 0⇔ X = t

[
−1

1

]

A = PDP−1 where D =

[
6 0

0 4

]
, P =

[
1 −1

1 1

]

Choose Q =

[
1√ − 1√

2

1√
2

1√
2

]
Q is an orthogonal matrix A = QDQT

Question

Is 〈u, v〉 =
[
u
]T
A
[
v
]

an inner product in R2? Equivalently, is A a positive definite matrix?

〈u, u〉 =
[
u
]T
A
[
u
]

=
[
u
]T
QDQT

[
u
]

=
(
QT
[
u
])T

D
(
QT
[
u
]) (40)
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Let S be the basis of R2 such that[
u
]
S

= QT
[
u
]

S =

{[
1√
2
1√
2

]
,

[
− 1√

2
1√
2

]}

〈u, u〉 =
[
u
]T
S
D
[
u
]
S

if
[
u
]
S

=

[
x1

x2

]
〈u, u〉 = λ1x

2
1 + λ2x

2
2

This defines an inner product iff λ1 > 0 and λ2 > 0

A =

[
5 1

1 5

]

u =

[
x

y

]
v =

[
x′

y′

]
〈u, v〉 = 5xx′ + (xy′ + x′y) + 5yy′

〈u, u〉 = 5x2 + 2xy + 5y2

= 6x21 + 4y21

(41)

Exercise

Let A =

−4 −2 4

−2 −1 2

4 2 −4


1. Find Q such that A = QDQT ; Q is the orthogonal matrix, and D is the diagonal

matrix

2. is 〈u, v〉 =
[
u
]T
A
[
v
]

an inner product in R3?

Other examples of inner product

1. Let V = Pn

〈p, q〉 =
∫ 1

0
p(t)q(t)dt

(Example: p(t) = t, q(t) = t− 1, 〈p, q〉 =
∫ 1

0
t(t− 1)dt = −1

6
)

(a)

〈q, p〉 =

∫ 1

0

q(t)p(t)dt

=

∫ 1

0

p(t)q(t)dt = 〈p, q〉
(42)
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(b)

〈p1 + p2, q〉 =

∫ 1

0

(p1(t) + p2(t))q(t)dt

=

∫ 1

0

p1(t)q(t)dt+

∫ 1

0

p2(t)q(t)dt

= 〈p1, q〉+ 〈p2, q〉

(43)

(c)

〈p, p〉 = 0⇔
∫ 1

0

p2(t)dt = 0

⇔ p2(t) = 0 ∀t ∈ (0, 1)

⇔ p(t) = 0 ∀t ∈ (0, 1)

(44)

xi = 1
i

i = 1, 2, 3, ..., n

xi ∈ (0, 1) P (xi) = 0

p(t) = C(x− xi)...(x− xn)

p(xn+1) = 0⇔ C(xn+1 − xi)...(xn+1 − xn) = 0⇒ C = 0 ∴ p = 0

Let ρ(t) > 0

weight function

on (0, 1)

〈p, q〉ρ =
∫ 1

0
ρ(t)p(t)q(t)dt

2. V = Mn×n

〈A,B〉 = tr(ATB)

(a)

〈B,A〉 = tr(BTA)

= tr
(
(BTA)T

)
= tr(ATB)

= 〈A,B〉

(45)

(b)

〈A,A〉 = tr(ATA)

A = (aij)

tr(ATA) =
∑
i

(ATA)

(46)

Let xi
n×1

be the ith column of A

(ATA)ii = XT
i xi
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tr(ATA) =
∑r

i=1 x
T
i xi ≥ 0

also
〈A,A〉 = 0⇒ xTi xi = 0 ∀i

ie xi = 0
n×1

∀i

ie A = 0
n×n

(47)

Cauchy-Schwarz Inequality

Proposition

Let 〈, 〉 be an inner product on a vector space V

〈u, v〉
∣∣2 ≤ 〈u, u〉〈v, v〉

Proof

Let u, v ∈ V be fixed

Define F (t) = 〈u+ tv, u+ tv〉
Note that F (t) ≥ 0 ∀t
Also F (t) = 〈u, u〉+ 2t〈u, v〉+ t2〈v, v〉
Therefore the discriminant ∆′ = 〈u, v〉2 − 〈u, u〉〈v, v〉 ≤ 0

19 2018/03/27

\\TODO

20 2018/03/29

\\TODO

21 2018/04/03

Exercises

1. Assume that E,R are 2 subspaces of V such that E⊥F .

Prove that PE⊕F = PE + PF

2. Does the above hold if E is not orthogonal to F?

Page 47 of 50



MATH 223 21 2018/04/03 Allan Wang

21.1 More about Projections

21.1.1 Rn with the usual dot project

If T,Rn → Rn is a linear transformations, let
[
T
]

be the standard matrix of T .

What are the condition(s) on
[
T
]

so that
[
T
]

is the standard matrix of an orthogonal pro-

jection onto a subspace E of Rn?

If T is an orthogonal projection

T 2(u) = T (T (u)

∈E

) = T (u), T 2 = T,
[
T
]2

=
[
T
]

Rn = Ker(T )⊕ Im(T ) E = Im(T )

If T is an orthogonal projection, we must also have Ker(T )⊥Im(T )

\\TODO add spans

u =

[
x

y

]
= (x− y)

[
1

0

]
+ y

[
1

1

]

Let
[
T (u)

]
=

[
y

y

]
=
[
T
] [x
y

]
=

[
0 1

0 1

][
x

y

]
[
T
]2

=
[
T
]
, Ker(T ) = span

{−→
i
}
, Im(T ) = span

{−→
i + j

}
For T to be an orthogonal projection on Im(T ), we must have Im(T )⊥Ker(T )

ie ∀u, v ∈ Rn

〈T (u), v − T (v)〉 = 0

〈T (u), v〉 = 〈T (u), T (v)〉 = 〈u, T (V )〉

〈T (u), v〉 = 〈u, T (v)〉[
T (u)

]T [
v
]

= 〈u〉T 〈T (v)〉[[
T
] [
u
]]T [

v
]

=
[
u
]T [

T
] [
v
]

(48)

Proposition

Let P be an n × n matrix such that P 2 = P . P is the standard matrix of an orthogonal

projection iff P T = P

Example

From lecture 18:

A =

[
5 1

1 5

]
eigenvalues: λ1 = 6, λ2 = 4
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λ = 6⇒ E6 = span

{[
1

1

]}
= span

{[
1√
2
1√
2

]}

λ = 4⇒ E4 = span

{[
−1

1

]}
= span

{[
− 1√

2
1√
2

]}

A = QDQT where Q =

[
1√
2
− 1√

2
1√
2

1√
2

]
, D =

[
6 0

0 4

]
Exercise

Prove that A = 6PE6 + 4PE4

22 2018/04/05

\\TODO away

23 2018/04/10

(E + F )⊥ = E⊥ ∩ F⊥

If E ⊥ F then PE⊕F = PE + PF
(49)

Exercise

If PE+F = PE + PF , is it necessary that E ⊥ F? E,F are subspaces of V .

T : V → V is an isomorphism iff
[
T
]
B

n×n

is invertible.

Let X
n×1

be such that
[
T
]
B
X = 0

Let v ∈ V such that
[
v
]
B

= X

[
T (v)

]
B

=
[
T
]
B

[
v
]
B

=
[
T
]
B
X = 0

∴ T (v) = 0v ⇒ v = 0v ⇒ X = 0

(50)

To prove the reverse, assume that
[
T
]
B

is invertible. Let us prove that Ker(T ) = {0v},
which is enough to show that T is an isomorphism.
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Let v ∈ Ker(T ), T (v) = 0v[
T (v)

]
B

= 0, ie
[
T
]
B

[
v
]
B

= 0

Since
[
T
]
B

is invertible, we must have
[
v
]
B

= 0, ie v = 0v

If E is a subspace of V , E ⊆ (E⊥)⊥

Let u ∈ E, ∀v ∈ E⊥

〈u, v〉 = 0⇒ u ∈ (E⊥)⊥, E ⊆ (E⊥)⊥
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