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2 2018/01/11
v C R™ is a subspace of R™ if

1. OeVv ie V' is non empty
2. u+v€V wheneverueV+aeV
3. aueV whenever @ € V,a € R

A subspace V of R has a basis

ie a family {u_>1, U3, ..., 17;?} of vectors in V' such that {u_>1, U3, ..., 17;.3} is a spanning set of V'

A spanning set of V' is a set such that every vector in V' is a linear combination of that set

ie whenever alu_>1 + agu_% + ...+ Ozku_g =0

if Ao =0, rank of A is k(< n), where & = dimension of V/

1. E={ W= |2t+s|.,teR seR Y C R¥* Eis not a subspace of R® as the 0 matrix

Examples
( [ ¢
\ !
is not included
( [t +s
2. F={ U =|2t+¢]|,t,s eERS CR3
L 1
t+s 1 1
WeEF= [2t=¢|=t|2] +5|-1
|0 0 0
( 1
F = span 20, |—-1 (linearly independent)
([0 0
1,1 1,0]
3. let A= 1[2,—-1| — |0,1
0,0 0,0,

;

1,17 [1,0

Rank(A) = 2: therefore ¢ [2,—1| [0,1 is linearly independent.

0,0 | [0,0
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3 2018/01/16

3.1 Diagonalization

T:R>— R?

projection onto the line

1 -1
A=l
21— 1]
x+y=0
A is diagonalizable, ie A+ P - D - P!

1
where D = 0 ,P= bl
0 0 -1 1

1 1
Letu_>1:[ 1] andv_1>:[1

1 0
The canonical basis of R? is B = { [0] = ?, [ ] = 7}

1
Note that B; = {171, Uf} is also a basis of R?

A is the standard matrix of T, it is in fact the matrix of 7" through the canonical basis of B

R |

x
a vector U € ] with respect to B.

Y
_A<p

has coordinates [

X

n

The coordinates of T(W) with respect to B is A ‘
Y

n

x
Let [ 1] be the coordinates of i with respect to B
S =T + ;= mul +yiof

x
= =P
Y

T

n

piap | =p | = |
() (7 0
D is the matrix of the linear transformation 7" through the basis B;

3.2 Vector Spaces

Let K be a field (K =R, K = C) Let V' be a nonempty set V' is equipped with 2 operations
Additions if W € ¥,V €V, then sum « + ¥ is defined

Scalar Multiplication if @ € V,a € R, is defined
V' is called a vector space (over K) if the following properties hold:

Page 4 of
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A, whenever 7,76\/,7-1—76‘/
Ay whenever 7,7€M7+7:7+7
As whenever U, U, W eV, (X + )+ W =4 + (V¥ + )

%
Ay there exists a special vector in V' called the zero vector, denoted by 0 such that
- =
WheneverﬁeV, T+ 0=0+d="1

As Given U € V', there exists WeVsuchthat ¥+ W =uw+ W = 6>
W is denoted by —u

S; Yae KNU € V,avecu €V

S, 1-U="U,1e K(K=R), W eV

Sy whenever a, 3 € K, € V,a(fU) = (af) U

Sy whenever o, e K, 4 €V, (a+8) U =aW + U
Sy whenever a € K, 0,7 €V, a(d + V) =ad +as

Examples

1. V = R" is a vector space over K =R

2. let M, be the set of all p x ¢ matrices
M,

pxq 1S & vector space over R

3. Let P be the set of all polynomials over R
P,Pe P, (P+ B)(x)=Pl(x)+ P(z) Vr € R
IlfaeReK,(aP)(x)=aP(x)Vz eR

4. Let 0 be the function such that 0(z) = 0 Vz

4 2018/01/18

4.1 Vector Spaces

Examples

Let D be a subset of R (D can be an interval for example)
Let F'(D) be the set of all real valued functions defined on D
For f,ge F(D), a,f€R,0: D — R

Page 5 of
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e f+g:D—R

o (f+g)(@)=f(z)+g(x)

o (af)(z)=a- f(z)

e fryg=9g+f

e (f+g)+h=f+(g+h)

o 0(z) =0

o f+0=Ff

o f+(=f)=0

el-f=f

o (a+pP)f(z) =af(z)+ Bf(x) = (af +5f)(z)

Note that if we set D = N

F(N) = set of all real-valued sequences

4.2 Proposition

Let (V,+,-) be a vector space over K

1. The zero vector 0 in V' is unique

2. Given U € V', the vector U is unique
3. Ifcv?zOthena:Oorﬁzﬁ>
4. 0= (-7

Proof

— —
1. Let 0; and 0y be two vectors such that

T4+0,=0,+7 =1 VT
T+ =0a+ U =1 VU

It follows that
-
01 =07 4+ 09 = 09
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2. Let @ € V and let 171) and 17% be two vectors such that

Tul=0
T+ =10
7 + w1 6)
G+ () =ws+ 0
(172) + 7) + W = W associativity
0+ wi = wh
Wi = wh
3. Suppose ad =01If #0
éeK K=R
éumzéﬁ:ﬁ
<éa>7=ﬁ el -7 =7 =0
4, U = (-1
1+(-1)=0
I+(-)d =00 =1
17+ (-7 =0
TH(-)T =0
(-1 = —4

4.3 Subspaces

Let (V,+-) be a vector space over K
Let E be a subset of V(E C V)
(E,+-) is called a subspace of (V,+, ")
if (E,+,-) is a vector space over K.
Proposition

E is a subspace of V' if the following properties hold:

1.0 ek
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2. Whenever 7,7€E U+ T eE
3. WheneverﬁeE,aeK ol €E

Notice that £ C V is a subspace of V iff F is nonempty and oW + BV € E whenever
U,V EEaBeK

Examples

1. Let C(]0,1]) be the set of all continuous functions on [0, 1]
C([0,1]) € F(]0,1]) < vector space
The function f:[0,1] - R
f € C(]0,1])(nonemptiness)
If f and g are continuous on [0, 1], so if f + g, as well as af Vo
C'[0, 1] is a subspace of F(|[0, 1])

2. LetE:{AEM2X2|A:AT}

10
Note that I, = 01 ck

whenever A, Be E, (A+B)l = AT+ BT = A+ B
A+BeFE

Also (aA)T = aAT = aA

ieaAd el

E is a subspace of Msy»

5 2018/01/23

5.1 Subspaces

Examples

1. Let E' = {p = P3, such that p(1) = 2}
E is a nonempty subset of P3(p(z) = 2z € E). But E is neither stable under addition

nor stable under scalar multiplication.

Ex pi(z) =22 € E, but (4p1)(z) =8z ¢ E.

.. I/ is not a subspace

Page 8 of
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2. Let E={pe Ps|p(0) >0}
The zero polynomial (0) € F
let p1 € E,p2 € E, (p1+2)(0) = p1(0) + p2(0) > 0
pl+p € E
However, E is not stable under scalar multiplication.
Expz)=2+1€ E+p0)=1>0
if « <0, then ap(0) =a<0—ap¢ F

3. If A is a n x m matrix
Null(4) = {z € R | AX =0}
Null(A) is a subspace of R™

Proof

X =0 € Null(A) since A0 =0 Let X3, Xy € Null(A)
AX1+ Xo) = AX, + AXp, =04+ 0=0

If X € Null(4),a € R

aX € Null(A) be

AlaX)=a(AX)=a0=0

Let (V,+,-) be a vector space on R.

Let Ui, u_g, ,an be n vector in V

Proposition

The subset £ C V of all linear combinations (l¢) of Ui, U, ..., uy, is a subspace of V, and is
denoted

E = span{u}, u}, ..., u,}
Proof
1. 0 eEbe 0 =0 + 00+ ... + 0w

2. F is stable under addition
Let ¥ = Yoy o, € F
w = Z?:l ﬁlu_{ €L
TH+W =0 (a4 + B € B
3. F is stable under scalar multiplication
U =" ou € Eand f€R
B = B i) = Z?:l(ﬁai)m S

Examples

Page 9 of
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1. Let A be a n x m matrix and Cy, (s, ..., C,, are the columns of A (each column € R™).
span {C1, Cy, ..., Cp, } is a vector subspace of R", called the column space of A and
denoted Col(A)n.

Similarly, the row space of A is Row(A) = Col(AT) is a subspace of R™.

2. E:P3
p € P),p(x) = ax®+ bx® + cx +d

P3 = span {z?, 2%, x,1}

3. E={pe€ P;|p(2) =0} is a subspace of P;
Ifpe E,p(x) =0
ie p(x) = (z — 2)q(x) where q(z) € Py
p(z) = (x — 2)(az® + bx + ¢) = az*(x — 2) + bx(z —2) + c(z —2) a,b,c€R
E = span {2?(x — 2),2(x — 2),x — 2}
p € Py p(x) = sumi_y "3 (x — 2)F
itpe B,p(2) =0

e (5)
1 2 3)
B gy B g B gy

Proposition

Let E be a subspace of V/

Let F} = {u_>1,272>, ,QTZ} be a subset of vectors in V/

Fy = {v_f, v_2>, ,1771)} be a subset of vectors in V'

F} and F; are both spanning sets of the same subspace E of V' iff every vector in F} is a lc

of vectors in F;, and every vector in F; is a [c of vectors in Fj.

6 2018/01/25

Wasn’t there
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7.1 Linear Independence
7.1.1 Properties

e If a subset u—{, u—>2, e i of vectors in V contains the zero vector <UZ> = 0 for some z),

then it is linearly dependent

o If F = {u—>1, s, ..., 17;2} is linearly independent, then any subset of F' is linearly depen-
dent

\\TODO update

if F =uj,uj,...,u, is linearly independent, and {171), u, ...7u_>n,un+1} is linearly inde-

pendent, then u, 1 € span {27{, 3, ,u_>n}

Proof

%

1. Without loss of generality, uf = 0
_>
Note that 2w} + 0u3 + 03 + ... + 0y, = 0

As there is a nonzero coeflicient, there must be linear dependence.

2. Let F' = {u—>1, U3, ..., IT]:} be linearly independent.
Let F} be a subset of F' containing k vectors, k < n
— N —
S =0 = 8w + 0 + 0tgs + ...0u;, = 0
Since F' is linearly independent, we must have ay = as = ... = a; =0

e Assume that ' = {ﬁ,u_%,,u_g} is linearly independent and {u_{,@,...,@),unﬂ} is

linearly dependent

There exists a finite sequence oy, as, ..., ay,, a1, where not all values are zeroes, such
that

— — — — _
Uy + QU + ... + s, + Qg1 = 0 (%)

Claim a1 # 0

Assume a, 11 =0

a1 = 0 and (%) yields

i} 4 oty + ... + ity = 0

which implies a1 = a3 = ... = a,, = 0 (since F' is linearly independent). That is a

contraction, therefore a,, 1 # 0

Page 11 of
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(%) can be rewritten as ay,1Un11 = alu_>1 + O{Q'LL—>2 + ...+ oznzT)n = Z?:l oziﬂz
— n L\ = L — =
Upil = D oy — <a:+1) u; ie u, 1 € span{uf, uj, ..., u,}

Proposition

If F= {u_>1, 275, e 17;2} is linearly dependent, then one of the u! can be written as the linear
combination of the others.

Basis

Let V be a vector apces and E be a subspace of V. A basis of F is a family F' = {u_>1, W, ..., 17;:}

of vectors in F such that

— =
1. E = span{uf, us, ..., u}

2. F = {27{, u3, ,QT;Z} is linearly independent

Examples
1 0 0
1. V=R? A basis of V is 0l,11],10
0

2. Let V be any vector space
— —
E= { 0 } does not have a basis because the only spanning set if { 0 } which is linearly
dependent

Lemma

Let E be a subspace of V'

Let F} = {u_{,@), ,u_)k} be a spanning set of F

Let Fy = {v_f, e ey v_k)} be a linearly independent subset of E
then m > n

Proof

By contradiction

Assume that n > m

Vi, U3, ..., U Ui, uj, ..., Uy,
AX =0

Fnj=1,2,...n

v_j> =3 aijﬁz (because Fj is a spanning set of E')
Let A = (aij)lgigmlgjgn

Page 12 of
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— —
Do i =300 (Z?:l 0%‘%‘) uj ()

Aismxnandn>m
Therefore, the homogeneous system AX = 0 has a non trivial solution.

_>
Using the components of the nontrivial solution in (), we have Z?Zl xjv_j> = 0, but
not all z; are equal to 0.

ie F5 is linearly dependent, which is a contradiction

Theorem

Let V' be a vector space and F be a subspace of V' such that E £ {ﬁ}

All basis of E have the same number k of vectors; k is called the dimension of E

Notation dim(FE) =k

Proof

Let By = {setultouk} and By = {setvltovl} be two basis of E. We have to prove that [ = k

By is a spanning set of E
=k2>1
Bj is linearly independent in E
B, is a spanning set of £
2 p g >k
By is linearly independent in
k=1
Remark
E= {ﬁ} dim(E) =0  dim(R?) = 3
Examples

1. P, = set of all polynomials of order < n
We have seen that B = {1,z,2% ...,2"} is a spanning set of P, and is also linearly

independent

B is a basis of P,
therefore dim(P,) =n +1

2. My, = set of all 2 x 2 matrices
10 00 00 01
00 10 0 1 00

Page 13 of
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{El, EQ, Eg, E4} is a basis of M2><2

M= Z; — 4B, 4+ bE,y + dEs + cE,

dim(Mays) =2 x 2 =4

8 2018/02/01

8.1 Basis & Dimensions

Examples

Llet U={M e My | M=M"}
It is clear that U is a subspace of Mo

Basis of U
b
Let M= ) m7=(" M=M' &b=c
b d c d
a b
MeU&s M=
b d

10 0 1 0 0
M=a +0b +d

00 10 01
Also {A;, Ag, A3} is linearly independent.
2. { A1, Ag, Ag} is a basis of U, ie dim(U) = 3

Lemma
(Fundamental)
If {171,772, ,ITZ} is a spanning set of U (a subspace of V') and {v_f,v_%, ,v_k}} is linearly

independent in U then k < n.
Proposition
Let U be a subspace of V' and dim(U) =n

1. Every spanning set of U has at least n elements

2. Every spanning set of U which contains n vectors is a basis of U

Proof

Page 14 of
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1. Let {u_>1,u_>2, ,ZT%} = B be a basis of U
Let F = {v_1>, me ,m} be a spanning set of U
Note that B is linearly independent, by the fundamental lemma m > n
2. Let FF = {v—1>, s, ﬁ} be a spanning set of U
Claim F' is also linearly dependent
Suppose otherwise; one of the o7 is a lc of the other ones.
WLOG 7, is alc of 07,03, ..., n_}
U= span{v_f, 3, v_g} = span{v_1>, v3, ,m}
Thus, a contradiction as every spanning set must have at least n elements. Therefore,

F is linearly independent, and a basis of U.

Examples

1. Tor F: V =span {22,z + 1}

False, dim(P;) = 3, and every spanning set must have at least 3 elements.

2. Tor F: V = span {Ixj,lzthrll,I:z:Q—x— 1I,I2:1:+3I}
P Py P3 Py
Note that 22 —xz — lisalc of z2 and x + 1

Let p(z) = az* + bx + c € Py
Can we find x1, 29,23 € R st. p = z1p1 + Taps + x3ps (%)

To+3r3 =c¢
(*) implies § xo + 223 =1b (6)
I =a
a I
AX = bl X = i)
C €T3
1 00
A=10 1 2
01 3
A is invertible, thus
a
X =A71|b| ie {P, P, P,} is a spanning set of P,
c

Page 15 of
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Proposition

Let U be a subspace of V' and dim(U) =n

1. Every linearly independent subset of U has at most n vectors

2. Any linearly independent subset of U which contains n elements is a basis of U
Proof

1. Use the fundamental lemma

2. Let B = {u_{,u_g, ,u_>n} is a basis of U and F' = {v_1>, o, ﬁ} a linearly independent
set in U

3. Claim F is also a spanning set o U
Proof by contradiction
W is not a lc of v7, 73, ..., v, then {v_1>, 5, On, ﬁ} is linearly independent
01 + 0T + oo+ gl = O

This is a linearly independent subset with n + 1 elements, which is a contradiction

Proposition

Let U and W be two subspaces of a vector space V'

1. If U € W then dim(U) < dim(W)
2. f U CW and dim(U) = dim(W) then U = W Proof

(a) A basis of U is a linearly independent set of vectors in W, thus has at most
dim (W) vectors

(by UCW  dim(U) =dim(W)=n
Let B = {u_>1, u_;, ey u_>n} be a basis of U; B is a linearly independent set of vectors
in W and B has n = dim(W) vectors. By the previous proposition, B is a basis
of W.
.. W =span {u_{, us, ,u_f@} =U

Examples

1. U={feF(N)| f(n+2)=3f(n+1)—2f(n)}
filn)=1 (1,1,1,..)
fa(n) =2 (202122 )
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9 2018/02/06

Example

U={feFWN)[fln+2)=3f(n+1)+2f(n) =0}

Note that U is the set of all sequences {x,}, -, such that z, 4o — 32,41 + 22, =0
Note that if f(n) =7" € U, then r =1 or r=2

fi(n) =1 V¥nis an element of U

fa(n) =2" Vn

{f1, f2} is a basis of U

If f €U and f(0) = f(1) =0, using the relation f(n +2) —3f(n+ 1)+ 2f(n) = 0, we can
deduce that f(n) =0 Vn.

{f1, f2} is linearly independent

Suppose that af; + 8fs =0

\\TODO

{f1, f2} is a spanning set of U
Let feU

Ja,b € R such that

=4
a+b=
{ + f(0) (8)
a+2b= f(1)
b= f(1) - f(0)
a=2f(0) = f(1)
Let g(n) = f(n) — (2£(0) = f(1)) fr(n) = (f(1) = f(0)) f2(n)

Any sequence {z,}, such that z, ;o = 32,41 + 22, = 0 can be written as

Ty = (220 — 1) + (29 — 21)2"

Page 17 of



MATH 223 9 2018/02/06 Allan Wang

Exercises

Find a basis for each of the following subspaces

L.U={feFN)| f(n+2)—4f(n+1)+4f(n)
2. U={fe FN) | f(n+2)=5f(n+1)+6f(n)

0}
0}

9.1 Direct Sum

Let V be a vector space and E, F' are 2 subspaces of V'
E+F={d=ui+w,u c€BuecFCV

Examples
1. V=R?
E 1 , 2 0 .
= span =1 = span =
P 0 P 1 J
E+ F=R?
2. V=R3
( 1 0
E=span<i= [0],7=]1 xy-plane
\ 0 0
( 0 0
F=span<j=[1]|,k= |0 yz-plane
L 0 1
Definition

Let V be a vector space and F and F' be 2 subspaces of V'
V' is said to be the direct sum of F and F

(Notation: =V =E @ F)
fV=E+FandEnF={0}

Proposition

If V = E; @ Es, then every vector W €V can be written uniquely as U =1uj + us, where
U—>1 S Ela u—>27 € E2
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Proof
U =ui+uy  ui,o e b
=v +v;  w -+ =€ E,
u 4 — 0 403
W= -7 =u—u=0
: €k ! : (S !

WeF, W€ Ey,,WeE NE,

ie W = 6)

Theorem

Let V be a finite dimensional vector space

Assume that V = E; @ F,

then dim(V') = dim(E,) + dim(FEy)

More precisely, if By = {u_>1, s, ..., 17%} is a basis of F; and By = {v_1>, e
E,5, then B = By U By is a basis of V

Proof

"V =E & E),V =F +FE,

.. B is a spanning set of V

UeV
U = W + wh
T T T |
ckq S
n m
SSameSasw
=1 =1

B is linearly independent (bc EiNEy= {ﬁ})
Z%Ez}‘i‘ZBiE} ~ 0 =
i=1 i=1

n
Z%’Uz‘) = —Z@UZ =
i=1 i=1

ﬁeEmu%:{ﬁ

=10

3

——

Page 19 of
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Z%Ui =0=aq=0 Vi=1,2,...,n Bjisa basis
i=1
Zﬁivi =0=p03=0 Vi=1,2,...,m Byisa basis
i=1

Examples

1. E=span{2—x,1+ 2} Find F such that
E®sF =P
{2 — z,1 + 2%} is linearly independent
codim(E) =2
itP=E®F
3 =dim(Py) = dim(E) + dim(F)
dim(F) =1
Let p(z) =1 Vax
pE P, butpé¢ E
F = span {p}
PR=F&FLE
2. Let V = M2><2
E={M € My | M =M"}
Find F such that £ ® F = Myys
M1 — A + AT
MT = AT 4 (ATY = AT+ A= M,
M2 - A — AT
M} =AT — A= M, (12)

E={M¢€ My, | M=M"}
F={ME& My, | M" =M}
MeENF=M=0

Let A€ M, y,

A= %(A+AT)+%(A — A"
L GE (] L EF ]
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Mnxn:E@F

10 2018/02/08

Mnxn =9 ¥ A
S={M € Muyn | M"' =M} A={M € My, | M" = =M} < dim(A) = =2 (13)
dim(S) = 25

dim(E @© F) = dim(E) + dim(F)

If dim(FE + F) = dim(E) + dim(F) then it is a direct sum.
Exercise

dim(E + F) = dim(E) + dim(F) — dim(E N F)

(ENF) is a subspace of V whenever E and F' are subspaces of V.

10.1 Coordinates

Let V be a vector space such that dimm(V) =n
Let B = {u_>1, us, ,QTn)} be a basis of V.
Given W in V, W can be written uniquely as a linear combination of vectors in B.

ie W = > T
L1
| P2 . . :
Therefore the column-matrix | | uniquely identifies .
T

is called the coordinate-vector of @ relative to the basis B.

Ty,
Examples

10 00 00 0 1
1. M. B={E = By = By = By =

1
M = ;
3 2
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U:{AGnglAT:A}

A basis of U is given by B; = {A1 =

1
O,A2: 0 1,A3:00
0 0 10 01

Coordinate vector of M relative to B

1
3
M=F +3F,+2FE;+3FE, & 9
3
Coordinate vector of M relative to B;
1
M = A; + 345 4+ 2A3 <+ | 3| (Note that the order for which you write the basis is
2

important)

2. Find a basis B of U = span{ 1 + 2,3 + 2%, (z — 1) } and find the coordinate vector
| I B S —— ' 1

Py Py 2
of p(z) = (x — 1)? relative to B.
{Py, P5, P3} is a spanning of U.
Linear Independence
ar P+ asPy+a3P; =0

Qaq 1 3 1 1 0 =2
A lag| = 0 where A= |1 0 =2~ |0 1 1
Ll [N
Py P 01 1 00 0
P3:—2P1+P2

{Py, P,} is linearly independent

B ={Py, P,} is a basis of U and coordinates of P = P; relative to B is

—2
1
Remark

If V' is a n-dimensional vector space over R
B = {ﬁ,ﬁ%, ,u_>n} is a basis of V/
T

X2

The map T : V - R", T(U) =
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X

L2 | . : :
where | | is the coordinate-vector of U relative to B

T
T
L2
is an isomorphism U <
Ty

10.2 Linear Transformations (Mapping)

Definition
Let V and W be two vector spaces over R

A map (of function) 7' : V' — W is called a linear transformation of the following properties
hold.

1. T(Ul> - E%) = T(_1>) + T(@) whenever uj, w3 € V

2. T(aW) = aT (W) whenever @ €V aeR

Remark

T :V — W is a linear transformation iff T(oqu_>1 + 042172) = alT(u_>1) + a2T(u—>2) whenever
u_)l,@) eV aj,as €R

or equivalently: T(31, a;u}) = S0, T ()

whenever a; i=1,...,.n€eR Uf i=1,...neV

Examples
1.
V=P

T:V =R
T(p) = [p(0))*
pi(z)=z—1 (14)
po(z) =2 +1
T(p1) = (1(0))* =1
T(p2) =1

T(p1+p2) =0
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T is not a linear transformation

2. The coordinate-map dim(V) = n and B = {u], u, ..., u,} is a basis of V
The map T : V — R"
21
T(W) = "2« coordinates of @ relative to B

L
T is a linear transformation

3. T:RP - R
T(X)= él I)_(I , where A is a ¢ X p matrix, is a linear transformation
IW' gxppx1

4. T:P,— P,
T(p)(x) = ap'(x) + [, p(
T(p1+p2)(z) = z(p(z )+pz )+ [y (01 (@) +pa(@))da = ap) (z) + [ pr(@)do+apy(z)+
Jo p2(@)dz = T(py)(2) + Tp2)(2)
T(ap)(z) = azp'(z) + a [, p(z)dz = oT(p)(x)

Proposition

Let T : V — W be a linear transformation

s =
T(Ov) = Ow

2. Let E be a subspace of V/
T(E) = {T(W), where @ € E} is a subspace of W

3. Let F' be a subspace of W
“UF)={" eV |T(W) € F} is a subspace of V

(a)
UevV
740y =1
T(7 + Oy) = T()
T(T)+T(Oy) = ()

(15)
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(b) Let E CV be a subspace of V/
T(E) = {T(W), where @ € E} (reverse in) O
Ov € B, - Oy = T(Oy) € T(E)
Let 171),172 eT(F); ag,a0 €R
W, = T(zT{) where u} € F
W = T('zTQ)) where w5 € E

i} + apwh = oy T(w]) + T (u3) = T(on ] + awy) = T(W)

where U = oqu_>1 + ozgu_% ek
ie 06117{ + &2?72) < T(E)

TYF)={W eV |T(W) e F}
Let uj,uj € T YF) aj,ay €R
T(w}) e F,T(uw}) € F
o} + apub € T7Y(F)

T(aiui + asts) = oy T(u1) +o2 T(u3) € F
er eFr

o} + agub € T7H(F)

11 2018/02/13

(From someone else’s notes)

11.1 Linear Transformations

Proposition

T:V — W is a linear transformation

1. If E is a subspace of V then T(E) = {T(W) where @ € E} is a subspace of W.

2. If F is a subspace of W then T-'(F) = {@ € V s.t. T(W) € F} is a subspace of V

Examples
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1.
T:R? — R?
X
X
ya
ya
A
_(r o000
“\o o 1/ Y
1 |? (17)

2x3 1 1
3x1

will be a linear transformation because it can be written in this format

(projection onto xz plane)

1 0
E =span< |0], |1 (xy plane)
0 0

if W € Ethen @ = |b andT(ﬁ):[g]
0

1 o
T(E) = span{ [0] } — x axis is in R?

-
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(

T
THF)={ W = |y | suchthat T(W) e F
L z
1
1
r=t,z=t,yis arbitrary —y=-s (18)
T-YF U = ( |t,seR
1
T YF)=span{ [0],
1 0

T~Y(F) is a subspace, T~!(F) cannot be empty, T e T-(F)

Particular Cases: Ker(T) and Im(T)
Let T': V' — W be a linear transformation

1. E =V is a trivial subspace of V
From previous proposition, T(V') is a subspace of W. It is called the image of V
through 7', denoted I'm(T)

2. F= {O—‘;} is also a trivial subspace of W. Using the previous proposition 7! ({(YJ})
is a subspace of V' called the kernel of T, denoted Ker(T).
—
Ker(T) = {7 eV st T(T) = OW}

Remark

T:V — W and {u_>1,272, T ...} is a spanning set of V/

then {T(u}), T(3), ..., T (i), ...} is a spanning set of T(V') = Im(T)

Proof

Let W € Im(T) (= T(V)), then 3% € Vst. W = T(W), « = 1, ouu), W = T(W) =
T o) = S0, o, T(u) (Linear combination of T'(}))

Examples

1.T:V=RP W =Rs
T(X) = AX
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0
0
A spanning set of Im(7T) is given by T(Uz) where @, = [1| « " position
0
_O_
—
px1

Ker(T) ={z | AX =0} = Null(A)

22.T: V=P —=W=R
T(p) = folp(x)dx is this a linear transformation?

T is a linear transformation

{1,,2?} is a spanning set of V'

pi(z) =1, po(x) = z, p3(x) = 22

T(p) =1,T(p2) = %, T(p3) = % — fractions came from doing transformations

11
Im(T) = 1.—.—-»CR
m(T) p{ ,2,3}_

=span{l} =R

(19)
T is onto because the whole W is covered by Im(T')

Ker(T) = {p € Py | [ pla)de = 0}

p(x) =azx® +bxr +c folp(x)dx:§+g—c:O
Ker(T) = span {z — 1,22 — 1}

a b a
$t+3+c=0 c=—-35—

pla)=ax?+br — ¢ -2 =a(a? - 1)+ bz —3)

NS

3. 712‘/2==A4QX2 — VV'::A4QX2

1 2
T(M)= A M  where A=
Ll | Iy | 1 2
2x2 2X22%2

Is this a linear transformation? Yes

LT
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What is the basis of Myys? E; =

1 0 0 0 0 0
7E2: 7E3: )
0 0 10 0 1

{El, Eg, Eg, E4} is a basis of M2><2

01
B, —

10 20 0 2 0 1
T(E,) = T(Ey) = T(Ey) = T(E,) =
JAS e e PV P Y
1 0] |01 . : .
Im(T) = span Lol 1o 1 } because clearly T'(E,) is twice T(Ey) & T(Es3) is

twice T'(Ey)

Ker(T) = {Myyxs | AM = 0}
M =[xy | xo] = AM = [Azy | Azo] =0
Ar; =0 x=t2-1]teR
Arg =0 x9=s[2—1]s€eR

t
-1

Ker(T) = span { (_21 8) : (8 _21> }

12 2018/02/15

M=

S
] t,s € R
—s

Definition

(one-to-one and onto linear transformations)

1. T :V — W, is said to be one-to-one (or injective) if, whenever T'(u})

have Ul) = '17%

2. T:V — W is said to be onto (or surjective) if W = J?m(T)

Remark

= T(U2)7 we

T : V — W is onto iff there is a spanning set {U{,@), e ...} of V such that {T(?T{),T(?T%), A

is a spanning set of W
Proposition
T :V — W, linear transformation is one-to-one iff Ker(T) = {OV}

Proof
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(=) Assume T is one-to-one

Recall Ker(T) = {7 cv | (D) = (ﬁ}
Let @ € Ker(T),T(7) = Oy = T(0v)
.- T is one-to-one, .. U = (f/>

(<) Assume that Ker(T) = {07}
Let us prove that 7' is one-to-one
Let u_>1, w € V', such that

T(uj) = T(u5) =
T(i} - @) = O
mm—@eKw@p{ﬁ} (20)
@t — =0y
ie uf = u}
Examples
1. T: P — P
1)) = [ sty
0
Ker(T) ={p | T(p) = 0}
T(p)(x) =0 Vi
d—(T (p)(z)) =0 ie p(x) =0 Vz (By Fundamental theorem of calculus)
Ker(T) = {0} ie T' is one-to-one

(21)
ST(E)0) =0 Vpe P,
.. the polynomial f(z) =1 Vz does not belong to Im(T'), ie Im(T') # Ps Exercise

Prove that Im(T) = {p € P3| p(0) =0}

2. T:R" — R™
T(X)= A X
mXn

(a) T is one-to-one iff the homogeneous system AX = 0 has a unique solution
ie Rank(A) =n
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12.1

(b) T is onto iff Col(A) = R™
ie Rank(A) = dim(Col(A)) =m

Remark

T:V—->W

Let W be a fixed vector in W
Solving the equation 77 = W

The set of all solutions is T ({w})

(a) T'({w}) can be empty (No solution)

(b) T-1({w}) can have only one vector if

w € Im(T) and T is one-to-one item 7~ ({w'}) has infinitely many vectors when

W e Im(T) and Ker(T) # {0—>V}

Isomorphism

Definition

A linear transformation 7' : V — W is said to be an isomorphism if 7T is one-to-one and

onto

Examples

1.

T:R" — R"
T(X)= A X
nxn

T is an isomorphism iff Rank(A) =n

T My — Mosn

T(A) = AT

Recall A € Ker(T) & T(A)=AT = 0
L u

A= (AT = (g )T =

0 0
u u
mX mX

n n

T is one-to-one
Let B € M,,xn

T is onto

T is an isomorphism
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3. The coordinate map

If V is a vector space such that dim(V) =n and {u], 4}, ..., u,} = B is a basis of V

The map T: V — R"
T1
T
T(W) = '2 « coordinates of U relative to B

Tn
is an isomorphism

Proposition

Let T : V — W be an isomorphism

The inverse transformation 77! : W — V is a linear transformation, and is also an isomor-

phism
Proof
ToT (@) =T Bew
T oT(V)=" VeV

Let ﬁ,@ eW, a,as € R

T oW} + cwwh) = an TN (@}) + T ()
T(T_I(OZNFi + 042175)) = oW} + o)
T(an T (w]) + TN (wh)) = an T(T~H(@h)) + auT(T " (wh))
= W] + i

".*'T'" is one-to-one

T_I(Oélu_h) + 042@) = OélT_l(’LFD + QQT_I(@)
Im(T-Y) =V

YT eV

T =TYT(V)) ie W eIm(T)

T € Ker(T™Y) T-N(@) =0y

@ = T(T(W)) = T(O0V) = 0w

Ker(T7Y) = {(ﬁ} T~ is one-to-one

T—1 is also an isomorphism

Exercise

Let T : V — W be an isomorphism and B = {u_>1, us, ,u_>n} be a basis of V
Let w, = T(u})

Prove that {@71),@, ,EZ} is a basis of W

Page 32 of

(22)



MATH 223 14 2018/02/22 Allan Wang

(.. dim(V) = dim(W))

Dimension Theorem

(Generalization of the Rank Theorem)

R™ — R A
i
nxm
Real(A) +dim(Null(A)) =m
L ] L 1
dim(col(A))=dim(Im(T)) dim(Ker(T))
Theorem

Let T': VRW be a linear transformation.
Assume dim(V) is finite
Then dim (V') = dim(Ker(T)) + dim(Im(T))

13 2018/02/20

\\TODO

14 2018/02/22

Midterm is on Chapter 4 & 5, and has 4 questions. Rooms will be announced tomorrow; try
to get there 10 min early.

Examples

1. Given E, F' are subspaces of V', prove that E® F C V.
We already know that 4+ F' C V| so we just need to show that £ N F' = {O_Z}

To prove equality, show that dim (V') = dim(E) + dim(F)

2. If U is a subspace of V', W is a subspace of V', and U U W is a subspace of V', prove
that UC W or W CU

IfU;(_WandWQU,takeﬁeUwhere7¢W,andﬁéthereﬁgéU,then
U+ ¢UUW

3. T,V > W

(a) E is a subspace of V/
dim(T(E)) = dim(E) — dim(Ker(T)NE)
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Define T : E — T(FE)

dim(F) = Idz'm(]m(Tl))l—I—Idim(Ker(Tl))l
—dim(T(E)) —dim(EnKer(T))
7 € Ker(T)) & 1 € E and T(W) = 0y, (23)
& U eFEand W e Ker(T)
Ker(Ty) = Ker(T)NE

15 2018/03/13

(Copied from someone else’s notes)

15.1 Matrix Representation of Linear Transformation

T:V = V,dim(V)=n

If B= {ul,u2, .. ,u_ﬁ} is a basis of V,

there exists a (unique) n x n matrix denoted [Tz such that Yu € V
[1(7)]5, = (75 ]

notel note2

note 1: coordinates of T'(W) relative to B

note 2: coordinates of U relative to B

Remark

Given that B = {uf, 4}, ..., w,}, the i column of [T]p is [T(u;)]5

Properties

1. If T} and T3 are linear transformations from V into V: [T} + Ty|p = [T + [T2]s

[(Ty + T3)(u)] g = [T1(u) + T2(U)]
= [
([Tl]B + [Tz]B)[ |5

[Ty +To]p = [Th]s + [T2]

5
€
@
g
5

(24)

2. If T:V — V is a linear transformation and a € R, [aT|p = o[T]5
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3. Let Ty : V =V, Ty : V — V be 2 linear transformations. [T} o Ty|p = [T1]s[T2] 5

[Th o Ty(u)] = [T1(Ta(u))]s
= [T1][Ta(u)]B (25)
= [T1]5[Ta]Blulp

4. T :V — V is an isomorphism iff [T]p is invertible. Moreover, [T}z = ([T]p) "

15.2 Change of Basis

T:V=Vdim(V)=n
B={uj,ub,...u,} and S = {v{, 03, ..., 0}

Let P be the n x n matrix such that every i* column is [v;]

If €V, then [u]p = Plu]s

T=Yaw fls= | [ulp = Syalods =P || = Pluls

P is the transition matrix from S to B

Let ueV
[T'(u)]s = P~HT(u)]5
= P_l[T]B[U]B (26)
= P! TB]P[uls
[T)s = P '[T|zP
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Example

T(p1)(z) =0
T(p2)(z) =2
T(ps)(z) = 22

000

(1] 010
0 0 2

1

(27)
Null([T]g) = span = Ker(T)
Ker(T) = {tp1,t € R} = span {p;}
1
T(g)(2) =2 = g(n +¢)
2
T(e)(x) =2z = (a1 + 2)
1
T(gs)(x) = 20" + & = 2(2" + 2) — v = 205 — (¢ + o)
L2z 1
3 3 3
Tla= |1 3 2
0 0 2
Using the formula [T|s = P ![T|gP
L=t o
P=11 2 1 Pt=|-1 1 -1
0 0 1 0 0 1
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15.2.1 Generalization

T :V — W is a linear transformation

dim(V) =n,B = {ui,us, ..., w,} is a basis of V

dim(W)=m,S = {171,0_5, - ﬁ} be a basis of W

There exists a unique m X n matrix

[T)p,s is called the matrix of 7" relative to the bases B and S such that Vu € V
[T()s = [T)5,5 [ul

mx1 mxn nx1
Remark

The j column of [T]p s is [T(u;)]s

Example

T:P— DB

T(p(n) =p'(n)
B = {1, z, 12, x3}

S= itz -Lpta
q1 q2 q3

32 = 3[(2° + 2) — 7]

:3(]3—313
=3¢ — ¢ — ¢
0 2 2 -1
[Tlps = |0 —3 2 —1
0O 0 0 3
16 2018/03/15
Generalization
T:V W

e Bisabasisof V, dim(V)=n
e S is a basis of W, dim(W) =m

Page 37 of

(28)



MATH 223 16 2018/03/15 Allan Wang

Then there exists a unique m X n matrix

[T] .4 such that whenever u € V, [T'(u)|g = [T]p5 ¢ [u]p

Proposition

Let Vi, V3, V3 be 3 vector spaces. dim(V;) = n; and B; is a basis of V; (i = 1,2, 3)
Let FF: V; — Vo and G : V5, — V3 be a linear transformation.

G o F : Vi — V3is a linear transformation such that

(G o F]Bl,Bg = [G]BQ,Bg [F]Bl,BQ

n3XxXni n3Xng na Xni
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Application

Ve & Ve [T,
T Id 1 1d
Vs & Vs [Ts

B={it,ud,..., . }

S:{Ff,v_ﬁ ..... v_ﬁ} (29)
[T]s = Ud]B,S [T]B [[d]S,B

Note that the column of [Id]p ¢ is [ui]g

Therefore [Id] ¢ = P, the transition matrix from B to S.
[T]g=P[T]p P

T=1IdoTold |

16.1 Similar Matrices

Two n x n matrices A, B are said to be similar if there exists an invertible matrix P, such
that A= PBP~!

Remark

1. If A and B are similar, det(A) = det(B)
2. tr(A) = tr(B)

Discussed and got back midterms

17 2018/03/20

17.1 Inner Product

Review: Dot Product

u,v € R"”
Uy U1
n U2 o)
w-v=> .  wv whereu= | " | v=
Unp, Un
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Properties

U-v=7°v-u
(up +ug) - v=uy-v+us-v

(au) - v =a(u-v) (30)

Cauchy-Schwarz Inequality

o] < V- wy/o o = [Jull [Jo]

If u0andv#0, then %2 <1 je—1 <%l <

lulllloll =

= cos(0) where 6 € [0, 7]

|u-v]
(o]l

0 is called the angle between u and v

Definition (Inner Product)

Let V be a vector space.

An inner product on V' is a function denoted (,) : V x V — R.
(It associates to any pair (u,v) € V x V as a number denoted (u, v))

Properties

1. (u,v) = (v,u) (Symmetry)
2. Whenever uq,us,v € V ajan € R:
(aquy + agug, v) = ay(ug, v) + agug, v)

3. (u,u) >0 and (u,u) =0 iff u =0,

Examples
1. V=R"
T
(u,v) =u-v= [u] [v]
| IS | S—
Ixn nx1
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<U1,U2> = T1%2 — Y1Y2
- i x2
= |71 y1}
- |~ Y2

o }'1 0| [
—_I1 Y1 0 —1| |y

I
g
!
N
<
N
—_

T
{oiuy + aoug, v) = [alul + a2u2} A [2}}
T

(ool el a1
)

aq(ug, v) + ag(ug, v
(u,u) = |:U]TA [u}
_y ] - u

If [u] = [(1)] , then (u,u) =—1<0

Therefore, (,) is not an inner product on V = R?

3. V=NR?
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2 =2
-2 6

X1 i)
Uy = Ug =
[?41] [yJ
(ur, ug) = 2x19 — 2(21y2 + T2y1) + Y192

Since A = AT, (u,v) = (v, u)

It is clear that (aqu; + asug, v) = aq{uy,v) + ag(us, v)

w7 Al ] - u

(u,u) = 2% — day + 63>

35
= 2(2* — 226) + 6y° (35)
=2((z —y)* — ") + 6y°
=2(x —y)’+4y°> >0
r—y=0 0
Moreover,(u, u) = 0 < Y ie [u] = [ ] (36)
=0 0
Y
17.2 Diagonalization of A
2 =2
(Based on example 3 above for A = - ] )
1. Characteristic Polynomial
PA = det(A — )\_[2)
2—X =2
= det
-2 6— /\]
(37)

—(A=2)(A—6)—4
=N _-8\+12—4
=\ -8\ +38
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2. Eigenvalues

AN =4+ 2V2

o =4 —2V2 (38)

3. Eigenvectors

242
A ndy — +2v2
-2 2+2\/' —1+\/§_

2 -9 [ 1
A— Iy = ( \/_ ) is an eigenvector

is an eigenvector

$1l’2:1+((—1)2—(\/_ =
4. Diagonalization

A=PDP! =
—14+v2 —1-v2 0 44 2v/2

Sl

1 1 ”4—2\/5 0

18 2018/03/22

T
(u,v) = [u] A [v}
(u,v) = (v,u) for this property to hold, we need A = AT; ie A must be symmetric
(u,v) is clearly linear in w.
The last property: (u,u) >0 and (u,u) =0< u =0

Definition

A symmetric matrix A such that [u} ! A [u] > 0 Vu € R" and [u] ! A [u} = 0 only for u =0
is called a positive definite matrix

Example

I,, is an n X n positive definite matrix

Proposition

If A is positive definite, then (u,v) = [U}T A [v} defines an inner product on R™

Theorem

If A is a symmetric matrix then A is diagonalizable. Moreover, there exists a matrix () such
that Q7! = QT and A = QDQT where D is a diagonal matrix.

Remark

Page 43 of



MATH 223 18 2018/03/22 Allan Wang

An n x n matrix, such that Q7! = QT (or equivalently QQT = QTQ = I,) is called an
orthogonal matrix.

If z; is the i column of @, then z7x; = 1 and 2] x; = 0 whenever i # j

Example
(n=2)
Rk 1]
15
Ps(N) = det(A — \I)
=(A=57-1
— (A-6)(A 1) )
)\1 - 6
Ao =14

-1 1
M=6 A—-\I=
LAAN] 142 (1 _1>

1

11
e v =4 A- X\ =
2 212 (1 1)

—1

6 0 1 -1
A= PDP~! where D = , P =
0 4 1 1

Choose ) = @ is an orthogonal matrix A = QDQ”

S <J-

1
v
1
) V2
Question

Is (u,v) = |:U]TA [v

an inner product in R?? Equivalently, is A a positive definite matrix?

(u,u) = [u ! u}

—

!

] A
o] @pQ™ [4] (40)

(@ [) 2 (@ [+])
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Let S be the basis of R? such that

ot s {2 7))
mw=MﬁWLiW&IEI

(u, u) = M3 + Aoz3

This defines an inner product iff A\; > 0 and Ay > 0
5 1

A=
15

(u,v) = bzx' + (xy' + 2'y) + dyy’

(u,u) = 52* + 2zy + 5y° (41)
= 6x% + 4y%
Exercise
—4 -2 4
Let A= -2 —1 2
4 2 -4

1. Find @ such that A = QDQ"; Q is the orthogonal matrix, and D is the diagonal

matrix

T
2. is (u,v) = [u] A [v] an inner product in R3?

Other examples of inner product

1. Let V = P,
(p.a) = Jy p()a(t)dt
(Example: p(t) =t,q(t) =t —1,{(p,q) = fol t{t —1)dt = —%)

(a)
(q,p) = /0 q(t)p(t)dt

=Ammww=m@
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(b)
@HWWDIAOMﬂ+m®M®ﬁ

= [ wiwatin + [ ooy (43)
= (p1,9) + (P2, @)
(c)
(p,p) =0% /
2(1) =0 Vie(0,1) (44)
& ()—0 vt € (0,1)
T :% 1=1,2,3,...,n
z; € (0,1) P(z;) =
p(t) = C(z — x;)...(x — xy)
p(Tni1) =0 C(xp — ) (X1 — ) =0=C=0..p=0
Let p( )>0 on (0,1)
Welght functlon
= [} p(t)p(t)q(t)dt
2.V =M,«n
(A, BY = tr(ATB)
(a)
(B, A) = tr(BT A)
=tr ((BTA)T) (45)
= tr(ATB)
= (A, B)
(b)
(A, A) = tr(ATA)
(46)

A= (ay)
tr(ATA) => (ATA)

%

Let x; be the i*" column of A

nx1

Page 46 of



MATH 223 21 2018/04/03 Allan Wang

tr(ATA) =57 xlz; >0

=11
also
(A,A)=0= alz;=0 Vi

e x;= 0 Vi
5 (47)

e A=

Cauchy-Schwarz Inequality

Proposition

Let (,) be an inner product on a vector space V'

(u, 0)[* < (u, u) (v, v)

Proof

Let u,v € V be fixed

Define F(t) = (u + tv,u + tv)

Note that F(t) >0 WVt

Also F(t) = (u,u) 4 2t{u,v) + t*(v,v)

Therefore the discriminant A’ = (u,v)? — (u, u){v,v) <0

19 2018/03/27

\\TODO

20 2018/03/29

\\TODO

21 2018/04/03

Exercises

1. Assume that E, R are 2 subspaces of V' such that FLF.
Prove that Ppop = Prp + Pr

2. Does the above hold if E' is not orthogonal to F'?
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21.1 More about Projections
21.1.1 R™ with the usual dot project

If T,R™ — R"™ is a linear transformations, let [T] be the standard matrix of 7.

What are the condition(s) on [T} so that [T} is the standard matrix of an orthogonal pro-

jection onto a subspace E of R"?

If T is an orthogonal projection
2
T(u) = T(T(w) = T(w), T =T, 1] = [1]
| I
cE
R™ = Ker(T) ® Im(T) E =1Im(T)
If T'is an orthogonal projection, we must also have Ker(T)LIm(T)
\\TODO add spans

T 1 1
v=, =(z—y) ol TV
La@wzbzpqzzﬁjz]

[T}2 = [T] ,Ker(T) = span{?} , Im(T) = span {7} —i—j}

For T to be an orthogonal projection on Im(T'), we must have I'm(T)LKer(T)
ie Yu,v € R”

(T(u),v—T()) =0
(T(w),0) = (T(w), T(v)) = {u, T(V))
(7)) = . TO) (48)
7] [o] = @)
L [ef) [e] = o] (7] o

Proposition

Let P be an n x n matrix such that P> = P. P is the standard matrix of an orthogonal
projection iff PT = P

Example

From lecture 18:
B 5 1

) eigenvalues: A\ = 6, \y =4
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1
)\:6:>E6:span{ ]

(1)
i ([} )

1 1 0
A =QDQT where Q = i 12] [ ]

ok

)

| — |

(oI e
W

V2 V2

Exercise
Prove that A = 6Pg, + 4Pp,

22 2018/04/05

\\TODO away

23  2018/04/10

(E+F)-=E"nF*

(49)
IfELFtheHPE@F:PE‘i‘PF

Exercise
If Pp.r = Pg+ Pr, is it necessary that £ 1. F'? E | F are subspaces of V.

T :V — V is an isomorphism iff [T} is invertible.

B
| I |

nxn

Let I)_(I be such that [T} X=0

nx1 B

Let v € V such that [v} =X

o], = 7], 4],
- [T} X =0 (50)

Tv)=0,=v=0,=>X=0

To prove the reverse, assume that [T} is invertible. Let us prove that Ker(T) = {0,},
B

which is enough to show that 7" is an isomorphism.
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Let v € Ker(T),T(v) =0,
[T(U)}B =0,1e |:Ti|B [U]B =0

Since [T] is invertible, we must have |:U] =0,iev =0,
B B

If E is a subspace of V, E C (E+)*
Let ue E, YveFE*+
(u,vy =0=u € (EH)LH F C (EH)*
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