MATH 223: Linear Algebra

Allan Wang

Last updated: March 25, 2019

Contents

1 2018/01/9 3
$2 \quad 2018 / 01 / 11$ 3
$3 \quad 2018 / 01 / 16$ 4
3.1 Diagonalization 4
3.2 Vector Spaces 4
$4 \quad 2018 / 01 / 18$ 5
4.1 Vector Spaces 5
4.2 Proposition 6
4.3 Subspaces 7
$5 \quad 2018 / 01 / 23$ 8
5.1 Subspaces 8
6 2018/01/25 10
7 2018/01/30 11
7.1 Linear Independence 11
7.1.1 Properties 11
$8 \quad 2018 / 02 / 01$ 14
8.1 Basis \& Dimensions 14

| 9 | $2018 / 02 / 06$ |
| :--- | :--- | 17

9.1 Direct Sum 18
10 2018/02/08 21
10.1 Coordinates 21
10.2 Linear Transformations (Mapping) 23
11 2018/02/13 25
11.1 Linear Transformations 25
12 2018/02/15 29
12.1 Isomorphism 31
13 2018/02/20 33
14 2018/02/22 33
15 2018/03/13 34
15.1 Matrix Representation of Linear Transformation 34
15.2 Change of Basis 35
15.2.1 Generalization 37
16 2018/03/15 37
16.1 Similar Matrices 39
17 2018/03/20 39
17.1 Inner Product [39
17.2 Diagonalization of A 42
18 2018/03/22 43
19 2018/03/27 47
20 2018/03/29 47
21 2018/04/03 47
21.1 More about Projections 48
21.1.1 \mathbb{R}^{n} with the usual dot project 48
22 2018/04/05 49
23 2018/04/10 49

1 2018/01/9

2 2018/01/11

$v \subseteq \mathbb{R}^{n}$ is a subspace of \mathbb{R}^{n} if

1. $\vec{O} \in V \quad$ ie V is non empty
2. $\vec{u}+\vec{v} \in V \quad$ whenever $\vec{u} \in V+\vec{\alpha} \in V$
3. $\alpha \vec{u} \in V \quad$ whenever $\vec{u} \in V, \vec{\alpha} \in \mathbb{R}$

A subspace V of \mathbb{R} has a basis
ie a family $\left\{\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \ldots, \overrightarrow{u_{k}}\right\}$ of vectors in V such that $\left\{\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \ldots, \overrightarrow{u_{k}}\right\}$ is a spanning set of V
A spanning set of V is a set such that every vector in V is a linear combination of that set ie whenever $\alpha_{1} \overrightarrow{u_{1}}+\alpha_{2} \overrightarrow{u_{2}}+\ldots+\alpha_{k} \overrightarrow{u_{k}}=0$
if $A \alpha=0$, rank of A is $k(\leq n)$, where $k=$ dimension of V
Examples

1. $E=\left\{\vec{u}=\left[\begin{array}{c}t \\ 2 t+s \\ 1\end{array}\right], t \in \mathbb{R}, s \in \mathbb{R}\right\} \subseteq R^{3} * E$ is not a subspace of R^{3} as the 0 matrix is not included
2. $F=\left\{\vec{u}=\left[\begin{array}{c}t+s \\ 2 t+s^{\prime} \\ 1\end{array}\right], t, s^{\prime} \in \mathbb{R}\right\} \subseteq R^{3}$
$\vec{u} \in F \Rightarrow\left[\begin{array}{c}t+s \\ 2 t=s^{\prime} \\ 0\end{array}\right]=t\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]+s^{\prime}\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]$
$F=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]\right\}$ (linearly independent)
3. let $A=\left[\begin{array}{c}1,1 \\ 2,-1 \\ 0,0\end{array}\right] \rightarrow\left[\begin{array}{l}1,0 \\ 0,1 \\ 0,0\end{array}\right]$
$\operatorname{Rank}(A)=2$: therefore $\left\{\left[\begin{array}{c}1,1 \\ 2,-1 \\ 0,0\end{array}\right]\left[\begin{array}{l}1,0 \\ 0,1 \\ 0,0\end{array}\right]\right\}$ is linearly independent.

3 2018/01/16

3.1 Diagonalization

$T: R^{2} \rightarrow R^{2}$
projection onto the line
$A=\frac{1}{2}\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$
$\mathrm{x}+\mathrm{y}=0$
A is diagonalizable, ie $A+P \cdot D \cdot P^{-1}$
where $D=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right], P=\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]$
Let $\overrightarrow{u_{1}}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$ and $\overrightarrow{v_{1}}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$
The canonical basis of \mathbb{R}^{2} is $B=\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]=\vec{i},\left[\begin{array}{l}0 \\ 1\end{array}\right]=\vec{j}\right\}$
Note that $B_{1}=\left\{\overrightarrow{u_{1}}, \overrightarrow{v_{1}}\right\}$ is also a basis of \mathbb{R}^{2}
A is the standard matrix of T, it is in fact the matrix of T through the canonical basis of B a vector $\vec{u} \in \overrightarrow{\mathbb{R}^{2}}$ has coordinates $\left[\begin{array}{l}x \\ y\end{array}\right]$ with respect to B.
The coordinates of $T(\vec{u})$ with respect to B is $A\left[\begin{array}{l}x \\ y\end{array}\right]=A\left(P\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right]\right)$
Let $\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right]$ be the coordinates of \vec{u} with respect to B_{1}
$\overrightarrow{u s}=\overrightarrow{x_{i}}+\overrightarrow{y_{j}}=x_{1} \overrightarrow{u_{1}}+y_{1} \overrightarrow{v_{1}}$
$\Rightarrow\left[\begin{array}{l}x \\ y\end{array}\right]=P\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right]$
$P^{-1} A P\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right]=D\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right]=\left[\begin{array}{c}x_{1} \\ 0\end{array}\right]$
D is the matrix of the linear transformation T through the basis B_{1}

3.2 Vector Spaces

Let K be a field $(K=\mathbb{R}, K=\mathbb{C})$ Let V be a nonempty set V is equipped with 2 operations
Additions
if $\vec{u} \in \vec{v}, \vec{v} \in V$, then sum $\vec{u}+\vec{v}$ is defined
Scalar Multiplication if $\vec{u} \in V, \alpha \in \mathbb{R}, \alpha \vec{u}$ is defined
V is called a vector space (over K) if the following properties hold:
A_{1} whenever $\vec{u}, \vec{v} \in V, \vec{u}+\vec{v} \in V$
A_{2} whenever $\vec{u}, \vec{v} \in V, \vec{u}+\vec{v}=\vec{v}+\vec{u}$
A_{3} whenever $\vec{u}, \vec{v}, \vec{w} \in V,(\vec{u}+\vec{v})+\vec{w}=\vec{u}+(\vec{v}+\vec{w})$
A_{4} there exists a special vector in V called the zero vector, denoted by $\overrightarrow{0}$ such that whenever $\vec{u} \in V, \vec{u}+\overrightarrow{0}=\overrightarrow{0}+\vec{u}=\vec{u}$
A_{5} Given $\vec{u} \in V$, there exists $\vec{w} \in V$ such that $\vec{u}+\vec{w}=\vec{w}+\vec{u}=\overrightarrow{0}$
\vec{w} is denoted by $-\vec{u}$
$S_{1} \forall \alpha \in K, \forall \vec{u} \in V$, α vecu $\in V$
$S_{2} 1 \cdot \vec{u}=\vec{u}, 1 \in K(K=\mathbb{R}), \vec{u} \in V$
S_{3} whenever $\alpha, \beta \in K, \vec{u} \in V, \alpha(\beta \vec{u})=(\alpha \beta) \vec{u}$
S_{4} whenever $\alpha, \beta \in K, \vec{u} \in V,(\alpha+\beta) \vec{u}=\alpha \vec{u}+\beta \vec{u}$
S_{5} whenever $\alpha \in K, \vec{u}, \vec{v} \in V, \alpha(\vec{u}+\vec{v})=\alpha \vec{u}+\alpha \vec{v} \mathrm{~S}$

Examples

1. $V=\mathbb{R}^{n}$ is a vector space over $K=\mathbb{R}$
2. let $M_{p \times q}$ be the set of all $p \times q$ matrices
$M_{p \times q}$ is a vector space over \mathbb{R}
3. Let P be the set of all polynomials over \mathbb{R}
$P_{1}, P_{2} \in P,\left(P_{1}+P_{2}\right)(x)=P_{1}(x)+P_{2}(x) \forall x \in \mathbb{R}$
If $\alpha \in \mathbb{R} \in K,(\alpha P)(x)=\alpha P(x) \forall x \in \mathbb{R}$
4. Let 0 be the function such that $0(x)=0 \forall x$

4 2018/01/18

4.1 Vector Spaces

Examples

Let D be a subset of \mathbb{R} (D can be an interval for example)
Let $F(D)$ be the set of all real valued functions defined on D
For $f, g \in F(D), \alpha, \beta \in \mathbb{R}, 0: D \rightarrow \mathbb{R}$

- $f+g: D \rightarrow \mathbb{R}$
- $(f+g)(x)=f(x)+g(x)$
- $(\alpha f)(x)=\alpha \cdot f(x)$
- $f+g=g+f$
- $(f+g)+h=f+(g+h)$
- $0(x)=0$
- $f+0=f$
- $f+(-f)=0$
- $1 \cdot f=f$
- $(\alpha+\beta) f(x)=\alpha f(x)+\beta f(x)=(\alpha f+\beta f)(x)$

Note that if we set $D=\mathbb{N}$
$F(\mathbb{N})=$ set of all real-valued sequences

4.2 Proposition

Let $(V,+, \cdot)$ be a vector space over K

1. The zero vector $\overrightarrow{0}$ in V is unique
2. Given $\vec{u} \in V$, the vector $\overrightarrow{-u}$ is unique
3. If $\alpha \vec{u}=0$ then $\alpha=0$ or $\vec{u}=\overrightarrow{0}$
4. $\overrightarrow{-u}=(-1) \vec{u}$

Proof

1. Let $\overrightarrow{0_{1}}$ and $\overrightarrow{0_{2}}$ be two vectors such that

$$
\begin{cases}\vec{u}+\overrightarrow{0_{1}}=\overrightarrow{0_{1}}+\vec{u}=\vec{u} & \forall \vec{u} \tag{1}\\ \vec{u}+\overrightarrow{0_{2}}=\overrightarrow{0_{2}}+\vec{u}=\vec{u} & \forall \vec{u}\end{cases}
$$

It follows that

$$
\overrightarrow{0_{1}}=\overrightarrow{0_{1}}+\overrightarrow{0_{2}}=\overrightarrow{0_{2}}
$$

2. Let $\vec{u} \in V$ and let $\overrightarrow{w_{1}}$ and $\overrightarrow{w_{2}}$ be two vectors such that

$$
\begin{aligned}
& \vec{u}+\overrightarrow{w_{1}}=\overrightarrow{0} \\
& \vec{u}+\overrightarrow{w_{2}}=\overrightarrow{0}
\end{aligned}
$$

$$
\begin{align*}
\vec{u}+\overrightarrow{w_{1}} & =\overrightarrow{0} \\
\overrightarrow{w_{2}}+\left(\vec{u}+\overrightarrow{w_{1}}\right) & =\overrightarrow{w_{2}}+\overrightarrow{0} \\
\left.\overrightarrow{w_{2}}+\vec{u}\right)+\overrightarrow{w_{1}} & =\overrightarrow{w_{2}} \quad \text { associativity } \tag{2}\\
0+\overrightarrow{w_{1}} & =\overrightarrow{w_{2}} \\
\overrightarrow{w_{1}} & =\overrightarrow{w_{2}}
\end{align*}
$$

3. Suppose $\alpha \vec{u}=0$ If $\alpha \neq 0$

$$
\begin{array}{r}
\frac{1}{\alpha} \in K \quad K=\mathbb{R} \\
\frac{1}{\alpha}(\alpha \vec{u})=\frac{1}{\alpha} \overrightarrow{0}=\overrightarrow{0} \tag{3}\\
\left(\frac{1}{\alpha} \alpha\right) \vec{u}=\overrightarrow{0} \quad \text { ie1 } \cdot \vec{u}=\vec{u}=0
\end{array}
$$

4. $-\vec{u}=(-1) \vec{u}$

$$
\begin{align*}
1+(-1) & =0 \\
(1+(-1)) \vec{u} & =0 \vec{u}=\vec{u} \\
1 \vec{u}+(-1) \vec{u} & =\overrightarrow{0} \tag{4}\\
\vec{u}+(-1) \vec{u} & =\overrightarrow{0} \\
\therefore \quad(-1) \vec{u} & =\overrightarrow{-u}
\end{align*}
$$

4.3 Subspaces

Let $(V,+\cdot)$ be a vector space over K
Let E be a subset of $V(E \subseteq V)$
$(E,+\cdot)$ is called a subspace of $(V,+, \cdot)$
if $(E,+, \cdot)$ is a vector space over K.
Proposition
E is a subspace of V if the following properties hold:

1. $\overrightarrow{0} \in E$
2. Whenever $\vec{u}, \vec{v} \in E \quad \vec{u}+\vec{v} \in E$
3. Whenever $\vec{u} \in E, \alpha \in K \quad \alpha \vec{u} \in E$

Notice that $E \subseteq V$ is a subspace of V iff E is nonempty and $\alpha \vec{u}+\beta \vec{v} \in E$ whenever $\vec{u}, \vec{v} \in E, \alpha, \beta \in K$

Examples

1. Let $C([0,1])$ be the set of all continuous functions on $[0,1]$
$C([0,1]) \subseteq F([0,1]) \leftarrow$ vector space
The function $f:[0,1] \rightarrow \mathbb{R}$
$f \in C([0,1])$ (nonemptiness)
If f and g are continuous on $[0,1]$, so if $f+g$, as well as $\alpha f \forall \alpha$
$C[0,1]$ is a subspace of $F([0,1])$
2. Let $E=\left\{A \in M_{2 \times 2} \mid A=A^{T}\right\}$

Note that $I_{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \in E$
whenever $A, B \in E,(A+B)^{T}=A^{T}+B^{T}=A+B$
$A+B \in E$
Also $(\alpha A)^{T}=\alpha A^{T}=\alpha A$
ie $\alpha A \in E$
E is a subspace of $M_{2 \times 2}$

5 2018/01/23

5.1 Subspaces

Examples

1. Let $E=\left\{p=P_{3}\right.$, such that $\left.p(1)=2\right\}$
E is a nonempty subset of $P_{3}(p(x)=2 x \in E)$. But E is neither stable under addition nor stable under scalar multiplication.

Ex $p_{1}(x)=2 x \in E$, but $\left(4 p_{1}\right)(x)=8 x \notin E$.
$\therefore E$ is not a subspace
2. Let $E=\left\{p \in P_{3} \mid p(0) \geq 0\right\}$

The zero polynomial $(0) \in E$
let $p_{1} \in E, p_{2} \in E,\left(p_{1}+_{2}\right)(0)=p_{1}(0)+p_{2}(0) \geq 0$
$p 1+p_{2} \in E$
However, E is not stable under scalar multiplication.
$\operatorname{Ex} p(x)=x+1 \in E \leftarrow p(0)=1 \geq 0$
if $\alpha<0$, then $\alpha p(0)=\alpha<0 \rightarrow \alpha p \notin E$
3. If A is a $n \times m$ matrix
$\operatorname{Null}(A)=\left\{x \in \mathbb{R}^{m} \mid A X=0\right\}$
$\operatorname{Null}(A)$ is a subspace of \mathbb{R}^{m}
Proof
$X=0 \in \operatorname{Null}(A)$ since $A 0=0$ Let $X_{1}, X_{2} \in \operatorname{Null}(A)$
$A\left(X_{1}+X_{2}\right)=A X_{1}+A X_{2}=0+0=0$
If $X \in \operatorname{Null}(A), \alpha \in \mathbb{R}$
$\alpha X \in \operatorname{Null}(A) b c$
$A(\alpha X)=\alpha(A X)=\alpha 0=0$

Let $(V,+, \cdot)$ be a vector space on \mathbb{R}.
Let $\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \ldots, \overrightarrow{u_{n}}$ be n vector in V
Proposition
The subset $E \subseteq V$ of all linear combinations $(l c)$ of $\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \ldots, \overrightarrow{u_{n}}$ is a subspace of V, and is denoted
$E=\operatorname{span}\left\{\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \ldots, \overrightarrow{u_{n}}\right\}$
Proof

1. $\overrightarrow{0} \in E$ bc $\overrightarrow{0}=0 \overrightarrow{u_{1}}+0 \overrightarrow{u_{2}}+\ldots+0 \overrightarrow{u_{n}}$
2. E is stable under addition

Let $\vec{v}=\sum_{i=1}^{n} \alpha_{i} \overrightarrow{u_{i}} \in E$
$\vec{w}=\sum_{i=1}^{n} \beta_{i} \overrightarrow{u_{1}} \in E$
$\vec{v}+\vec{w}=\sum_{i=1}^{n}\left(\alpha_{i}+\beta_{i}\right) \overrightarrow{u_{i}} \in E$
3. E is stable under scalar multiplication
$\vec{u}=\sum_{i=1}^{n} \alpha_{i} \overrightarrow{u_{i}} \in E$ and $\beta \in \mathbb{R}$
$\beta \vec{u}=\beta\left(\sum_{i=1}^{n} \alpha_{i} \overrightarrow{u_{i}}\right)=\sum_{i=1}^{n}\left(\beta \alpha_{i}\right) \overrightarrow{u_{i}} \in E$
Examples

1. Let A be a $n \times m$ matrix and $C_{1}, C_{2}, \ldots, C_{m}$ are the columns of A (each column $\in \mathbb{R}^{n}$). span $\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$ is a vector subspace of \mathbb{R}^{n}, called the column space of A and denoted $\operatorname{Col}(A) n$.
Similarly, the row space of A is $\operatorname{Row}(A)=\operatorname{Col}\left(A^{T}\right)$ is a subspace of \mathbb{R}^{m}.
2. $E=P_{3}$
$\left.p \in P_{3}\right), p(x)=a x^{3}+b x^{2}+c x+d$
$P_{3}=\operatorname{span}\left\{x^{3}, x^{2}, x, 1\right\}$
3. $E=\left\{p \in P_{3} \mid p(2)=0\right\}$ is a subspace of P_{3}

If $p \in E, p(x)=0$
ie $p(x)=(x-2) q(x)$ where $q(x) \in P_{2}$
$p(x)=(x-2)\left(a x^{2}+b x+c\right)=a x^{2}(x-2)+b x(x-2)+c(x-2) \quad a, b, c \in \mathbb{R}$
$E=\operatorname{span}\left\{x^{2}(x-2), x(x-2), x-2\right\}$
$p \in P_{3}, p(x)=\operatorname{sum}_{k=0}^{3} \frac{f^{(k)}(2)}{k!}(x-2)^{k}$
if $p \in E, p(2)=0$

$$
\begin{align*}
p(x) & =\sum_{k=0}^{3} \frac{p^{(k)}(2)}{k!}(x-2)^{k} \tag{5}\\
& =\frac{p^{(1)}(2)}{1!}(x-2)+\frac{p^{(2)}(2)}{2!}(x-2)^{2}+\frac{p^{(3)}(2)}{3!}(x-2)^{3}
\end{align*}
$$

Proposition

Let E be a subspace of V
Let $F_{1}=\left\{\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \ldots, \overrightarrow{u_{n}}\right\}$ be a subset of vectors in V
$F_{2}=\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}\right\}$ be a subset of vectors in V
F_{1} and F_{2} are both spanning sets of the same subspace E of V iff every vector in F_{1} is a lc of vectors in F_{2} and every vector in F_{2} is a $l c$ of vectors in F_{1}.

6 2018/01/25

Wasn't there

7 2018/01/30

7.1 Linear Independence

7.1.1 Properties

- If a subset $\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \ldots, \overrightarrow{u_{k}}$ of vectors in V contains the zero vector $\left(\overrightarrow{u_{i}}=\overrightarrow{0}\right.$ for some $\left.i\right)$, then it is linearly dependent
- If $F=\left\{\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \ldots, \overrightarrow{u_{k}}\right\}$ is linearly independent, then any subset of F is linearly dependent
$\backslash \backslash$ TODO update
- if $F=\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \ldots, \overrightarrow{u_{n}}$ is linearly independent, and $\left\{\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \ldots, \overrightarrow{u_{n}}, \overrightarrow{u_{n+1}}\right\}$ is linearly independent, then $\overrightarrow{u_{n+1}} \in \operatorname{span}\left\{\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \ldots, \overrightarrow{u_{n}}\right\}$

Proof

1. Without loss of generality, $\overrightarrow{u_{1}}=\overrightarrow{0}$

Note that $2 \overrightarrow{u_{1}}+0 \overrightarrow{u_{2}}+0 \overrightarrow{u_{3}}+\ldots+0 \overrightarrow{u_{n}}=\overrightarrow{0}$
As there is a nonzero coefficient, there must be linear dependence.
2. Let $F=\left\{\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \ldots, \overrightarrow{u_{k}}\right\}$ be linearly independent.

Let F_{1} be a subset of F containing k vectors, $k \leq n$

$$
\sum_{i=1}^{n} \alpha_{i} \overrightarrow{u_{i}}=\overrightarrow{0} \Rightarrow \sum_{i=1}^{k} \alpha_{i} \overrightarrow{u_{i}}+0 \overrightarrow{u_{i+1}}+0 \overrightarrow{u_{i+2}}+\ldots 0 \overrightarrow{u_{n}}=\overrightarrow{0}
$$

Since F is linearly independent, we must have $\alpha_{1}=\alpha_{2}=\ldots=\alpha_{k}=0$

- Assume that $F=\left\{\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \ldots, \overrightarrow{u_{k}}\right\}$ is linearly independent and $\left\{\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \ldots, \overrightarrow{u_{n}}, \overrightarrow{u_{n+1}}\right\}$ is linearly dependent

There exists a finite sequence $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, \alpha_{n+1}$, where not all values are zeroes, such that
$\alpha_{1} \overrightarrow{u_{1}}+\alpha_{2} \overrightarrow{u_{2}}+\ldots+\alpha_{n} \overrightarrow{u_{n}}+\alpha_{n+1} \overrightarrow{u_{n+1}}=\overrightarrow{0}(*)$

Claim $\alpha_{n+1} \neq 0$
Assume $\alpha_{n+1}=0$
$\alpha_{n+1}=0$ and $(*)$ yields
$\alpha_{1} \overrightarrow{u_{1}}+\alpha_{2} \overrightarrow{u_{2}}+\ldots+\alpha_{n} \overrightarrow{u_{n}}=\overrightarrow{0}$
which implies $\alpha_{1}=\alpha_{2}=\ldots=\alpha_{n}=0$ (since F is linearly independent). That is a contraction, therefore $\alpha_{n+1} \neq 0$
$(*)$ can be rewritten as $\alpha_{n+1} \overrightarrow{u_{n+1}}=\alpha_{1} \overrightarrow{u_{1}}+\alpha_{2} \overrightarrow{u_{2}}+\ldots+\alpha_{n} \overrightarrow{u_{n}}=\sum_{i=1}^{n} \alpha_{i} \overrightarrow{u_{i}}$ $\overrightarrow{u_{n+1}}=\sum_{i=1}^{n}-\left(\frac{\alpha_{i}}{\alpha n+1}\right) \overrightarrow{u_{i}} \quad$ ie $\overrightarrow{u_{n+1}} \in \operatorname{span}\left\{\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \ldots, \overrightarrow{u_{n}}\right\}$

$\underline{\text { Proposition }}$

If $F=\left\{\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \ldots, \overrightarrow{u_{k}}\right\}$ is linearly dependent, then one of the $\overrightarrow{u_{i}}$ can be written as the linear combination of the others.

Basis

Let V be a vector apces and E be a subspace of V. A basis of E is a family $F=\left\{\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \ldots, \overrightarrow{u_{k}}\right\}$ of vectors in E such that

1. $E=\operatorname{span}\left\{\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \ldots, \overrightarrow{u_{n}}\right\}$
2. $F=\left\{\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \ldots, \overrightarrow{u_{k}}\right\}$ is linearly independent

Examples

1. $V=\mathbb{R}^{3} \quad$ A basis of V is $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$
2. Let V be any vector space
$E=\{\overrightarrow{0}\}$ does not have a basis because the only spanning set if $\{\overrightarrow{0}\}$ which is linearly dependent

Lemma

Let E be a subspace of V
Let $F_{1}=\left\{\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \ldots, \overrightarrow{u_{k}}\right\}$ be a spanning set of E
Let $F_{2}=\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{k}}\right\}$ be a linearly independent subset of E
then $m \geq n$
Proof
By contradiction
Assume that $n>m$
$\left[\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}\right]=\left[\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \ldots, \overrightarrow{u_{n}}\right] A X$
$A X=0$
Fn $j=1,2, \ldots, n$
$\overrightarrow{v_{j}}=\sum_{i=1}^{m} a_{i j} \overrightarrow{u_{i}} \quad$ (because F_{1} is a spanning set of E)
Let $A=\left(a_{i j}\right)_{1 \leq i \leq m 1 \leq j \leq n}$
$\sum_{j=1}^{m} x_{j} \overrightarrow{v_{j}}=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} \alpha_{i j} x_{j}\right) \overrightarrow{u_{i}}(*)$
A is $m \times n$ and $n>m$
Therefore, the homogeneous system $A X=0$ has a non trivial solution.
Using the components of the nontrivial solution in $(*)$, we have $\sum_{j=1}^{n} x_{j} \overrightarrow{v_{j}}=\overrightarrow{0}$, but not all x_{j} are equal to 0 .
ie F_{2} is linearly dependent, which is a contradiction

Theorem

Let V be a vector space and E be a subspace of V such that $E \neq\{\overrightarrow{0}\}$
All basis of E have the same number k of vectors; k is called the dimension of E
Notation $\quad \operatorname{dim}(E)=k$
Proof
Let $B_{1}=\{$ setu1touk $\}$ and $B_{2}=\{$ setv1tovl $\}$ be two basis of E. We have to prove that $l=k$

$$
\begin{aligned}
& \left.\begin{array}{l}
B_{1} \text { is a spanning set of } E \\
B_{2} \text { is linearly independent in } E
\end{array}\right\} \Rightarrow k \geq l \\
& \left.\begin{array}{l}
B_{2} \text { is a spanning set of } E \\
B_{1} \text { is linearly independent in } E
\end{array}\right\} \Rightarrow l \geq k
\end{aligned}
$$

$k=l$
Remark
$E=\{\overrightarrow{0}\} \quad \operatorname{dim}(E)=0 \quad \operatorname{dim}\left(\mathbb{R}^{3}\right)=3$
Examples

1. $P_{n}=$ set of all polynomials of order $\leq n$

We have seen that $B=\left\{1, x, x^{2}, \ldots, x^{n}\right\}$ is a spanning set of P_{n} and is also linearly independent
B is a basis of P_{n} therefore $\operatorname{dim}\left(P_{n}\right)=n+1$
2. $M_{2 \times 2}=$ set of all 2×2 matrices

$$
E_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) E_{2}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) E_{1}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) E_{1}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

$$
\begin{aligned}
& \left\{E_{1}, E_{2}, E_{3}, E_{4}\right\} \text { is a basis of } M_{2 \times 2} \\
& M=\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)=a E_{1}+b E_{2}+d E_{3}+c E_{4} \\
& \operatorname{dim}\left(M_{2 \times 2}\right)=2 \times 2=4
\end{aligned}
$$

8 2018/02/01

8.1 Basis \& Dimensions

Examples

1. let $U=\left\{M \in M_{2 \times 2} \mid M=M^{T}\right\}$

It is clear that U is a subspace of $M_{2 \times 2}$
$\underline{\text { Basis of } U}$
Let $M=\left(\begin{array}{ll}a & c \\ b & d\end{array}\right) \quad M^{T}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \quad M=M^{T} \Leftrightarrow b=c$
$M \in U \Leftrightarrow M=\left(\begin{array}{ll}a & b \\ b & d\end{array}\right)$
$M=a\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)+b\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)+d\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$
Also $\left\{A_{1}, A_{2}, A_{3}\right\}$ is linearly independent.
$\therefore\left\{A_{1}, A_{2}, A_{3}\right\}$ is a basis of U, ie $\operatorname{dim}(U)=3$

Lemma

(Fundamental)
If $\left\{\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \ldots, \overrightarrow{u_{n}}\right\}$ is a spanning set of U (a subspace of V) and $\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{k}}\right\}$ is linearly independent in U then $k \leq n$.
Proposition
Let U be a subspace of V and $\operatorname{dim}(U)=n$

1. Every spanning set of U has at least n elements
2. Every spanning set of U which contains n vectors is a basis of U
$\underline{\text { Proof }}$
3. Let $\left\{\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \ldots, \overrightarrow{u_{n}}\right\}=B$ be a basis of U

Let $F=\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{m}}\right\}$ be a spanning set of U
Note that B is linearly independent, by the fundamental lemma $m \geq n$
2. Let $F=\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}\right\}$ be a spanning set of U

Claim F is also linearly dependent
Suppose otherwise; one of the $\overrightarrow{v_{i}}$ is a lc of the other ones.
WLOG $\overrightarrow{v_{n}}$ is a lc of $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n-1}}$
$U=\operatorname{span}\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}\right\}=\operatorname{span}\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n-1}}\right\}$
Thus, a contradiction as every spanning set must have at least n elements. Therefore, F is linearly independent, and a basis of U.

Examples

1. T or $\mathrm{F}: V=\operatorname{span}\left\{x^{2}, x+1\right\}$

False, $\operatorname{dim}\left(P_{2}\right)=3$, and every spanning set must have at least 3 elements.
2. T or $\mathrm{F}: V=\operatorname{span}\{{\underset{P_{1}}{2}}_{x^{2}}, \frac{x+1}{x_{P_{2}}}, \underbrace{x^{2}-x-1}_{P_{3}}, \frac{2 x+3}{P_{4}}\}$

Note that $x^{2}-x-1$ is a lc of x^{2} and $x+1$
Let $p(x)=a x^{2}+b x+c \in P_{2}$
Can we find $x_{1}, x_{2}, x_{3} \in \mathbb{R}$ st. $p=x_{1} p_{1}+x_{2} p_{2}+x_{3} p_{4}\left(^{*}\right)$

$$
\left(^{*}\right) \text { implies } \begin{cases}x_{2}+3 x_{3} & =c \tag{6}\\ x_{2}+2 x_{3} & =b \\ x_{1} & =a\end{cases}
$$

$$
\begin{aligned}
& A X=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \quad X=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \\
& A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 2 \\
0 & 1 & 3
\end{array}\right]
\end{aligned}
$$

A is invertible, thus
$X=A^{-1}\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ ie $\left\{P_{1}, P_{2}, P_{4}\right\}$ is a spanning set of P_{2}

Proposition

Let U be a subspace of V and $\operatorname{dim}(U)=n$

1. Every linearly independent subset of U has at most n vectors
2. Any linearly independent subset of U which contains n elements is a basis of U

Proof

1. Use the fundamental lemma
2. Let $B=\left\{\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \ldots, \overrightarrow{u_{n}}\right\}$ is a basis of U and $F=\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}\right\}$ a linearly independent set in U
3. Claim F is also a spanning set o U

Proof by contradiction
\vec{w} is not a lc of $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}$ then $\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}, \vec{w}\right\}$ is linearly independent
$\alpha_{1} \overrightarrow{v_{1}}+\alpha_{2} \overrightarrow{v_{2}}+\ldots+\alpha_{k} \overrightarrow{v_{k}}=\overrightarrow{0}$
This is a linearly independent subset with $n+1$ elements, which is a contradiction

Proposition
Let U and W be two subspaces of a vector space V

1. If $U \subseteq W$ then $\operatorname{dim}(U) \leq \operatorname{dim}(W)$
2. If $U \subseteq W$ and $\operatorname{dim}(U)=\operatorname{dim}(W)$ then $U=W \underline{\text { Proof }}$
(a) A basis of U is a linearly independent set of vectors in W, thus has at most $\operatorname{dim}(W)$ vectors
(b) $U \subseteq W \quad \operatorname{dim}(U)=\operatorname{dim}(W)=n$

Let $B=\left\{\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \ldots, \overrightarrow{u_{n}}\right\}$ be a basis of $U ; B$ is a linearly independent set of vectors in W and B has $n=\operatorname{dim}(W)$ vectors. By the previous proposition, B is a basis of W.
$\therefore W=\operatorname{span}\left\{\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \ldots, \overrightarrow{u_{n}}\right\}=U$
Examples

1. $U=\{f \in F(N) \mid f(n+2)=3 f(n+1)-2 f(n)\}$
$f_{1}(n)=1 \quad(1,1,1, \ldots)$
$f_{2}(n)=2^{n} \quad\left(2^{0}, 2^{1}, 2^{2}, \ldots\right)$

9 2018/02/06

Example
$U=\{f \in F(\mathbb{N}) \mid f(n+2)-3 f(n+1)+2 f(n)=0\}$
Note that U is the set of all sequences $\left\{x_{n}\right\}_{n \geq 0}$ such that $x_{n+2}-3 x_{n+1}+2 x_{n}=0$
Note that if $f(n)=r^{n} \in U$, then $r=1$ or $r=2$
$f_{1}(n)=1 \quad \forall n$ is an element of U
$f_{2}(n)=2^{n} \quad \forall n$
$\left\{f_{1}, f_{2}\right\}$ is a basis of U
If $f \in U$ and $f(0)=f(1)=0$, using the relation $f(n+2)-3 f(n+1)+2 f(n)=0$, we can deduce that $f(n)=0 \quad \forall n$.
$\left\{f_{1}, f_{2}\right\}$ is linearly independent
Suppose that $\alpha f_{1}+\beta f_{2}=0$

$\backslash \backslash$ TODO

$\left\{f_{1}, f_{2}\right\}$ is a spanning set of U
Let $f \in U$
$\exists a, b \in \mathbb{R}$ such that

$$
\left\{\begin{array}{l}
a f_{1}(0)+b f_{2}(0)=f(0) \tag{7}\\
a f_{1}(1)+b f_{2}(1)=f(1)
\end{array}\right.
$$

\Leftrightarrow

$$
\left\{\begin{array}{l}
a+b=f(0) \tag{8}\\
a+2 b=f(1)
\end{array}\right.
$$

$b=f(1)-f(0)$
$a=2 f(0)-f(1)$
Let $g(n)=f(n)-(2 f(0)-f(1)) f_{1}(n)-(f(1)-f(0)) f_{2}(n)$
$g \in U$ and $g(0)=0, g(1)=0$
$\therefore \operatorname{using}\left(^{*}\right) g(n)=0 \quad \forall n$
ie $f(n)=(2 f(0)-f(1)) f_{1}(n)+(f(0)-f(1)) f_{2}(n)$

Any sequence $\left\{x_{n}\right\}_{n}$ such that $x_{n+2}=3 x_{n+1}+2 x_{n}=0$ can be written as

$$
x_{n}=\left(2 x_{0}-x_{1}\right)+\left(x_{0}-x_{1}\right) 2^{n}
$$

Exercises

Find a basis for each of the following subspaces

1. $U=\{f \in F(\mathbb{N}) \mid f(n+2)-4 f(n+1)+4 f(n)=0\}$
2. $U=\{f \in F(\mathbb{N}) \mid f(n+2)-5 f(n+1)+6 f(n)=0\}$

9.1 Direct Sum

Let V be a vector space and E, F are 2 subspaces of V $E+F=\left\{\vec{u}=\overrightarrow{u_{1}}+\overrightarrow{u_{2}}, \overrightarrow{u_{1}} \in E, \overrightarrow{u_{2}} \in F\right\} \subseteq V$
Examples

1. $V=\mathbb{R}^{2}$

$$
\begin{aligned}
& E=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right]=i\right\} \quad F=\operatorname{span}\left\{\left[\begin{array}{l}
0 \\
1
\end{array}\right]=j\right\} \\
& E+F=\mathbb{R}^{2}
\end{aligned}
$$

2. $V=\mathbb{R}^{3}$

$$
\begin{aligned}
& E=\text { span }\left\{i=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], j=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\} \quad \text { xy-plane } \\
& F=\operatorname{span}\left\{j=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], k=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\} \quad \text { yz-plane }
\end{aligned}
$$

Definition

Let V be a vector space and E and F be 2 subspaces of V
V is said to be the direct sum of E and F
(Notation: $=V=E \oplus F$)
If $V=E+F$ and $E \cap F=\{\overrightarrow{0}\}$
$\underline{\text { Proposition }}$
If $V=E_{1} \oplus E_{2}$, then every vector $\vec{u} \in V$ can be written uniquely as $\vec{u}=\overrightarrow{u_{1}}+\overrightarrow{u_{2}}$, where $\overrightarrow{u_{1}} \in E_{1}, \overrightarrow{u_{2}}, \in E_{2}$

Proof

$$
\begin{align*}
\vec{u}=\overrightarrow{u_{1}}+\overrightarrow{u_{2}} & \overrightarrow{u_{1}}, \overrightarrow{v_{1}} \in E_{1} \\
=\overrightarrow{v_{1}}+\overrightarrow{v_{2}} & \overrightarrow{u_{2}}+\overrightarrow{v_{2}}=\in E_{2} \\
\overrightarrow{u_{1}}+\overrightarrow{u_{2}} & =\overrightarrow{v_{1}}+\overrightarrow{v_{2}} \tag{9}\\
\vec{w}=\underset{\in E_{1}}{\overrightarrow{u_{1}}-\overrightarrow{v_{1}}} & =\underset{\in E_{2}}{\overrightarrow{v_{2}}-\overrightarrow{u_{2}}}=\overrightarrow{0}
\end{align*}
$$

$\vec{w} \in E_{1}, \vec{w} \in E_{2}, \vec{w} \in E_{1} \cap E_{2}$
ie $\vec{w}=\overrightarrow{0}$
Theorem
Let V be a finite dimensional vector space
Assume that $V=E_{1} \oplus E_{2}$
then $\operatorname{dim}(V)=\operatorname{dim}\left(E_{1}\right)+\operatorname{dim}\left(E_{2}\right)$
More precisely, if $B_{1}=\left\{\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \ldots, \overrightarrow{u_{n}}\right\}$ is a basis of E_{1} and $B_{2}=\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{m}}\right\}$ is a basis of E_{2}, then $B=B_{1} \cup B_{2}$ is a basis of V
Proof
$\because V=E_{1} \oplus E_{2}, V=E_{1}+E_{2}$
$\therefore B$ is a spanning set of V

$$
\begin{align*}
\vec{u} & \in V \\
\vec{u} & =\underset{\in E_{1}}{\overrightarrow{w_{1}}}+\underset{\in E_{2}}{\overrightarrow{w_{2}}} \tag{10}\\
& =\sum_{i=1}^{n} \alpha_{1} \overrightarrow{u_{i}}+\sum_{i=1}^{m} \beta_{i}+\overrightarrow{v_{i}}
\end{align*}
$$

B is linearly independent $\left(\mathrm{bc} E_{1} \cap E_{2}=\{\overrightarrow{0}\}\right)$

$$
\begin{align*}
\sum_{i=1}^{n} \alpha_{i} \overrightarrow{u_{i}}+\sum_{i=1}^{m} \beta_{i} \overrightarrow{v_{i}} & =\overrightarrow{0} \Leftrightarrow \\
\sum_{i=1}^{n} \alpha_{i} \overrightarrow{u_{i}} & =-\sum_{i=1}^{m} \beta_{i} \overrightarrow{v_{i}}=\vec{w} \tag{11}\\
\vec{w} \in E_{1} \cap E_{2} & =\{\overrightarrow{0}\} \\
\vec{w} & =\overrightarrow{0}
\end{align*}
$$

$$
\begin{aligned}
& \sum_{i=1}^{n} \alpha_{i} \overrightarrow{u_{i}}=\overrightarrow{0} \Rightarrow \alpha_{i}=0 \quad \forall i=1,2, \ldots, n \quad B_{1} \text { is a basis } \\
& \sum_{i=1}^{m} \beta_{i} \overrightarrow{v_{i}}=\overrightarrow{0} \Rightarrow \beta_{i}=0 \quad \forall i=1,2, \ldots, m \quad B_{2} \text { is a basis }
\end{aligned}
$$

Examples

1. $E=\operatorname{span}\left\{2-x, 1+x^{2}\right\} \quad$ Find F such that
$E \oplus F=P_{2}$
$\because\left\{2-x, 1+x^{2}\right\}$ is linearly independent
$\therefore \operatorname{dim}(E)=2$
if $P_{2}=E \oplus F$
$3=\operatorname{dim}\left(P_{2}\right)=\operatorname{dim}(E)+\operatorname{dim}(F)$
$\operatorname{dim}(F)=1$

Let $p(x)=1 \quad \forall x$
$p \in P_{2}$, but $p \notin E$
$F=\operatorname{span}\{p\}$
$P_{2}=F \oplus E$
2. Let $V=M_{2 \times 2}$
$E=\left\{M \in M_{2 \times 2} \mid M=M^{T}\right\}$
Find F such that $E \oplus F=M_{2 \times 2}$

$$
\begin{array}{r}
M_{1}=A+A^{T} \\
M_{1}^{T}=A^{T}+\left(A^{T}\right)^{T}=A^{T}+A=M_{1} \\
M_{2}=A-A^{T} \\
M_{2}^{T}=A^{T}-A=-M_{2} \tag{12}\\
E=\left\{M \in M_{n \times n} \mid M=M^{T}\right\} \\
F=\left\{M \in M_{n \times n} \mid M^{T}=-M\right\} \\
M \in E \cap F \Rightarrow M=0
\end{array}
$$

Let $A \in M_{n \times n}$

$$
A=\underbrace{\frac{1}{2}\left(A+A^{T}\right)}_{\in E}+\underbrace{\frac{1}{2}\left(A-A^{T}\right)}_{\in F}
$$

Page 20 of 50

$$
M_{n \times n}=E \oplus F
$$

10 2018/02/08

$$
S=\left\{M \in M_{n \times n} \mid M^{T}=M\right\} A=\left\{M \in M_{n \times n} \mid M^{T}=-M\right\}\left\{\begin{array}{l}
M_{n \times n}=S \oplus A \tag{13}\\
\operatorname{dim}(A)=\frac{n^{2}-n}{2} \\
\operatorname{dim}(S)=\frac{n^{2}+n}{2}
\end{array}\right.
$$

$\operatorname{dim}(E \oplus F)=\operatorname{dim}(E)+\operatorname{dim}(F)$
If $\operatorname{dim}(E+F)=\operatorname{dim}(E)+\operatorname{dim}(F)$ then it is a direct sum.
Exercise
$\operatorname{dim}(E+F)=\operatorname{dim}(E)+\operatorname{dim}(F)-\operatorname{dim}(E \cap F)$
$(E \cap F)$ is a subspace of V whenever E and F are subspaces of V.

10.1 Coordinates

Let V be a vector space such that $\operatorname{dimm}(V)=n$
Let $B=\left\{\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \ldots, \overrightarrow{u_{n}}\right\}$ be a basis of V.
Given \vec{w} in V, \vec{w} can be written uniquely as a linear combination of vectors in B. ie $\vec{w}=\sum_{i=1}^{n} x_{i} \overrightarrow{u_{i}}$

Therefore the column-matrix $\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$ uniquely identifies \vec{w}. $\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$ i is called the coordinate-vector of \vec{w} relative to the basis B.

Examples

1. $M_{2 \times 2} \quad B=\left\{E_{1}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right], E_{2}=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right], E_{3}=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right], E_{4}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\right\}$

$$
M=\left[\begin{array}{ll}
1 & 3 \\
3 & 2
\end{array}\right]
$$

$U=\left\{A \in M_{\times 2} \mid A^{T}=A\right\}$
A basis of U is given by $B_{1}=\left\{A_{1}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right], A_{2}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], A_{3}=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$
Coordinate vector of M relative to B
$M=E_{1}+3 E_{2}+2 E_{3}+3 E_{4} \leftrightarrow\left[\begin{array}{l}1 \\ 3 \\ 2 \\ 3\end{array}\right]$
Coordinate vector of M relative to B_{1}
$M=A_{1}+3 A_{2}+2 A_{3} \leftrightarrow\left[\begin{array}{l}1 \\ 3 \\ 2\end{array}\right]$ (Note that the order for which you write the basis is important)
2. Find a basis B of $U=\operatorname{span}\{\underbrace{1+x}_{P_{1}}, \frac{3+x^{2}}{\underbrace{}_{P_{2}}}, \underbrace{(x-1)^{2}}_{P_{3}}\}$ and find the coordinate vector of $p(x)=(x-1)^{2}$ relative to B.
$\left\{P_{1}, P_{2}, P_{3}\right\}$ is a spanning of U.
Linear Independence
$\alpha_{1} P_{1}+\alpha_{2} P_{2}+\alpha_{3} P_{3}=0$
$\underset{3 \times 3}{A}\left[\begin{array}{l}\alpha_{1} \\ \alpha_{2} \\ \alpha_{3}\end{array}\right]=\underset{3 \times 1}{0}$ where $A=\left[\begin{array}{ccc}1 & 3 & 1 \\ 1 & 0 & -2 \\ 0 & 1 & 1\end{array}\right] \rightsquigarrow\left[\begin{array}{ccc}1 & 0 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right]$
$P_{3}=-2 P_{1}+P_{2}$
$\left\{P_{1}, P_{2}\right\}$ is linearly independent
$B=\left\{P_{1}, P_{2}\right\}$ is a basis of U and coordinates of $P=P_{3}$ relative to B is $\left[\begin{array}{c}-2 \\ 1\end{array}\right]$
Remark
If V is a n-dimensional vector space over \mathbb{R}
$B=\left\{\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \ldots, \overrightarrow{u_{n}}\right\}$ is a basis of V
The map $T: V \rightarrow \mathbb{R}^{n}, T(U)=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$
where $\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$ is the coordinate-vector of \vec{u} relative to B
is an isomorphism $\vec{u} \leftrightarrow\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$

10.2 Linear Transformations (Mapping)

Definition
Let V and W be two vector spaces over \mathbb{R}
A map (of function) $T: V \rightarrow W$ is called a linear transformation of the following properties hold.

1. $T\left(\overrightarrow{u_{1}}+\overrightarrow{u_{2}}\right)=T\left(\overrightarrow{u_{1}}\right)+T\left(\overrightarrow{u_{2}}\right)$ whenever $\overrightarrow{u_{1}}, \overrightarrow{u_{2}} \in V$
2. $T(\alpha \vec{u})=\alpha T(\vec{u})$ whenever $\vec{u} \in V \quad \alpha \in \mathbb{R}$

Remark

$T: V \rightarrow W$ is a linear transformation iff $T\left(\alpha_{1} \overrightarrow{u_{1}}+\alpha_{2} \overrightarrow{u_{2}}\right)=\alpha_{1} T\left(\overrightarrow{u_{1}}\right)+\alpha_{2} T\left(\overrightarrow{u_{2}}\right)$ whenever $\overrightarrow{u_{1}}, \overrightarrow{u_{2}} \in V \quad \alpha_{1}, \alpha_{2} \in \mathbb{R}$
or equivalently: $T\left(\sum_{i=1}^{n} \alpha_{i} \overrightarrow{u_{i}}\right)=\sum_{i=1}^{n} \alpha_{i} T\left(\overrightarrow{u_{i}}\right)$
whenever $\alpha_{i} \quad i=1, \ldots, n \in \mathbb{R} \quad \overrightarrow{u_{i}} \quad i=1, \ldots, n \in V$
Examples
1.

$$
\begin{align*}
V & =P \\
T: V & \rightarrow R \\
T(p) & =[p(0)]^{2} \\
p_{1}(x) & =x-1 \tag{14}\\
p_{2}(x) & =x+1 \\
T\left(p_{1}\right) & =\left(p_{1}(0)\right)^{2}=1 \\
T\left(p_{2}\right) & =1 \\
T\left(p_{1}+p_{2}\right) & =0
\end{align*}
$$

T is not a linear transformation
2. The coordinate-map $\operatorname{dim}(V)=n$ and $B=\left\{\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \ldots, \overrightarrow{u_{n}}\right\}$ is a basis of V

The map $T: V \rightarrow \mathbb{R}^{n}$
$T(\vec{u})=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \cdots \\ x_{n}\end{array}\right] \leftarrow$ coordinates of \vec{u} relative to B
T is a linear transformation
3. $T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$
$\underset{q \times 1}{T(X)}=\underset{q \times p}{\underset{p \times 1}{A} \underset{\sim}{X}}$, where A is a $q \times p$ matrix, is a linear transformation
4. $T: P_{2} \rightarrow P_{2}$
$T(p)(x)=x p^{\prime}(x)+\int_{0}^{1} p(x) d x$
$T\left(p_{1}+p_{2}\right)(x)=x\left(p_{1}^{\prime}(x)+p_{2}^{\prime}(x)\right)+\int_{0}^{1}\left(p_{1}(x)+p_{2}(x)\right) d x=x p_{1}^{\prime}(x)+\int_{0}^{1} p_{1}(x) d x+x p_{2}^{\prime}(x)+$ $\int_{0}^{1} p_{2}(x) d x=T\left(p_{1}\right)(x)+T\left(p_{2}\right)(x)$
$T(\alpha p)(x)=\alpha x p^{\prime}(x)+\alpha \int_{0}^{1} p(x) d x=\alpha T(p)(x)$

Proposition

Let $T: V \rightarrow W$ be a linear transformation

1. $T\left(\overrightarrow{O_{V}}\right)=\overrightarrow{O_{W}}$
2. Let E be a subspace of V $T(E)=\{T(\vec{u})$, where $\vec{u} \in E\}$ is a subspace of W
3. Let F be a subspace of W
$T^{-1}(F)=\{\vec{u} \in V \mid T(\vec{u}) \in F\}$ is a subspace of V
Proof
(a)

$$
\begin{align*}
& \vec{u} \in V \\
& \vec{u}+\overrightarrow{O_{V}}=\vec{u} \\
& T\left(\vec{u}+\overrightarrow{O_{V}}\right)=T(\vec{u}) \tag{15}\\
& T(\vec{u})+T\left(\overrightarrow{O_{V}}\right)=T(\vec{u}) \\
& \therefore T\left(\overrightarrow{O_{V}}\right)=\overrightarrow{O_{W}} \quad
\end{align*}
$$

(b) Let $E \subseteq V$ be a subspace of V
$T(E)=\{T(\vec{u})$, where $\vec{u} \in E\}$ (reverse in) $\overrightarrow{O_{W}}$
$\overrightarrow{O_{V}} \in E, \therefore \overrightarrow{O_{W}}=T\left(\overrightarrow{O_{V}}\right) \in T(E)$
Let $\overrightarrow{w_{1}}, \overrightarrow{w_{2}} \in T(E) ; \alpha_{1}, \alpha_{2} \in \mathbb{R}$
$\overrightarrow{w_{1}}=T\left(\overrightarrow{u_{1}}\right)$ where $\overrightarrow{u_{1}} \in E$
$\overrightarrow{w_{2}}=T\left(\overrightarrow{u_{2}}\right)$ where $\overrightarrow{u_{2}} \in E$
$\alpha_{1} \overrightarrow{w_{1}}+\alpha_{2} \overrightarrow{w_{2}}=\alpha_{1} T\left(\overrightarrow{u_{1}}\right)+\alpha_{2} T\left(\overrightarrow{u_{2}}\right)=T\left(\alpha_{1} \overrightarrow{u_{1}}+\alpha_{2} \overrightarrow{u_{2}}\right)=T(\vec{u})$
where $\vec{u}=\alpha_{1} \overrightarrow{u_{1}}+\alpha_{2} \overrightarrow{u_{2}} \in E$
ie $\alpha_{1} \overrightarrow{w_{1}}+\alpha_{2} \overrightarrow{w_{2}} \in T(E)$
(c)

$$
\begin{align*}
T^{-1}(F) & =\{\vec{u} \in V \mid T(\vec{u}) \in F\} \\
\text { Let } \overrightarrow{u_{1}}, \overrightarrow{u_{2}} & \in T^{-1}(F) \alpha_{1}, \alpha_{2} \in \mathbb{R} \\
T\left(\overrightarrow{u_{1}}\right) & \in F, T\left(\overrightarrow{u_{2}}\right) \in F \\
\alpha_{1} \overrightarrow{u_{1}}+\alpha_{2} \overrightarrow{u_{2}} & \in T^{-1}(F) \tag{16}\\
T\left(\alpha_{1} \overrightarrow{u_{1}}+\alpha_{2} \overrightarrow{u_{2}}\right) & =\alpha_{1} T\left(\overrightarrow{u_{1}}\right)+\alpha_{2} T\left(\overrightarrow{u_{2}}\right) \in F \\
\alpha_{1} \overrightarrow{u_{1}}+\alpha_{2} \overrightarrow{u_{2}} & \in T^{-1}(F)
\end{align*}
$$

11 2018/02/13

(From someone else's notes)

11.1 Linear Transformations

Proposition
$T: V \rightarrow W$ is a linear transformation

1. If E is a subspace of V then $T(E)=\{T(\vec{u})$ where $\vec{u} \in E\}$ is a subspace of W.
2. If F is a subspace of W then $T^{-1}(F)=\{\vec{u} \in V$ s.t. $T(\vec{u}) \in F\}$ is a subspace of V Examples
3.

$$
\begin{align*}
T: \mathbb{R}^{3} & \rightarrow \mathbb{R}^{2} \\
T\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) & =\binom{x}{z} \\
& =\underbrace{\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)}_{2 \times 3} \underbrace{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]}_{3 \times 1} \tag{17}
\end{align*}
$$

will be a linear transformation because it can be written in this format (projection onto xz plane)

$$
E=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\} \text { (xy plane) }
$$

if $\vec{u} \in E$ then $\vec{u}=\left[\begin{array}{l}a \\ b \\ 0\end{array}\right]$ and $T(\vec{u})=\left[\begin{array}{l}a \\ 0\end{array}\right]$
$T(E)=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\} \rightarrow x$ axis is in \mathbb{R}^{2}
2. Let $F=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$

$$
\left.\begin{array}{rl}
T^{-1}(F)= & \left\{\vec{u}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \text { such that } T(\vec{u}) \in F\right\} \\
T(\vec{u})= & \binom{x}{z}=t\binom{1}{1} \quad t \in \mathbb{R} \\
& x=t, z=t, y \text { is arbitrary } \rightarrow y=s \tag{18}\\
T^{-1}(F)=\left\{\left.\vec{u}=\left(\begin{array}{l}
t \\
s \\
t
\end{array}\right) \right\rvert\, t, s \in \mathbb{R}\right\} \\
T^{-1}(F)=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right.
\end{array}\right\}
$$

$T^{-1}(F)$ is a subspace, $T^{-1}(F)$ cannot be empty, $\overrightarrow{0} \in T^{-1}(F)$

Particular Cases: $\operatorname{Ker}(T)$ and $\operatorname{Im}(T)$
Let $T: V \rightarrow W$ be a linear transformation

1. $E=V$ is a trivial subspace of V

From previous proposition, $T(V)$ is a subspace of W. It is called the image of V through T, denoted $\operatorname{Im}(T)$
2. $F=\left\{\overrightarrow{0_{W}}\right\}$ is also a trivial subspace of W. Using the previous proposition $T^{-1}\left(\left\{\overrightarrow{0_{W}}\right\}\right)$ is a subspace of V called the kernel of T, denoted $\operatorname{Ker}(T)$.

$$
\operatorname{Ker}(T)=\left\{\vec{u} \in V \text { s.t. } T(\vec{u})=\overrightarrow{0_{W}}\right\}
$$

Remark
$T: V \rightarrow W$ and $\left\{\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \ldots, \overrightarrow{u_{n}}, \ldots\right\}$ is a spanning set of V
then $\left\{T\left(\overrightarrow{u_{1}}\right), T\left(\overrightarrow{u_{2}}\right), \ldots, T\left(\overrightarrow{u_{n}}\right), \ldots\right\}$ is a spanning set of $T(V)=\operatorname{Im}(T)$
Proof
Let $\vec{w} \in \operatorname{Im}(T)(\equiv T(V))$, then $\exists \vec{u} \in V$ s.t. $\vec{w}=T(\vec{u}), \vec{u}=\sum_{i=1}^{n} \alpha_{i} \overrightarrow{u_{i}}, \vec{w}=T(\vec{u})=$ $T\left(\sum_{i=1}^{n} \alpha_{i} \overrightarrow{u_{i}}\right)=\sum_{i=1}^{n} \alpha_{i} T\left(\overrightarrow{u_{i}}\right)$ (Linear combination of $T\left(\overrightarrow{u_{i}}\right)$)
Examples

1. $T: V=\mathbb{R}^{p} \rightarrow W=\mathbb{R}^{q}$
$T(X)=A X$

A spanning set of $\operatorname{Im}(T)$ is given by $T\left(\overrightarrow{u_{i}}\right)$ where $\overrightarrow{u_{i}}=\underbrace{\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right]}_{p \times 1} \leftarrow i^{\text {th }}$ position
$T\left(\overrightarrow{u_{i}}\right)=A \overrightarrow{u_{i}}=i^{t h}$ column of A
$\operatorname{Im}(T)=\operatorname{Col}(A)$
$\operatorname{Ker}(T)=\{x \mid A X=0\}=\operatorname{Null}(A)$
2. $T: V=P_{2} \rightarrow W=\mathbb{R}$
$T(p)=\int_{0}^{1} p(x) d x \quad$ is this a linear transformation?
T is a linear transformation
$\left\{1, x^{2}\right\}$ is a spanning set of V
$p_{1}(x)=1, p_{2}(x)=x, p_{3}(x)=x^{2}$
$T\left(p_{1}\right)=1, T\left(p_{2}\right)=\frac{1}{2}, T\left(p_{3}\right)=\frac{1}{3} \rightarrow$ fractions came from doing transformations

$$
\begin{align*}
\operatorname{Im}(T) & =\operatorname{span}\left\{1, \frac{1}{2}, \frac{1}{3}\right\} \subseteq \mathbb{R} \tag{19}\\
& =\operatorname{span}\{1\}=\mathbb{R}
\end{align*}
$$

T is onto because the whole W is covered by $\operatorname{Im}(T)$
$\operatorname{Ker}(T)=\left\{p \in P_{2} \mid \int_{0}^{1} p(x) d x=0\right\}$
$p(x)=a x^{2}+b x+c \quad \int_{0}^{1} p(x) d x \Rightarrow \frac{a}{3}+\frac{b}{2}-c=0$
$\operatorname{Ker}(T)=\operatorname{span}\left\{x-\frac{1}{2}, x^{2}-\frac{1}{3}\right\}$
$\frac{a}{3}+\frac{b}{2}+c=0 \quad c=-\frac{a}{3}-\frac{b}{2}$
$p(x)=a x^{2}+b x-\frac{a}{3}-\frac{b}{2}=a\left(x^{2}-\frac{1}{3}\right)+b\left(x-\frac{1}{2}\right)$
3. $T: V=M_{2 \times 2} \rightarrow W=M_{2 \times 2}$
$T(\underset{2 \times 2}{M})=\underset{2 \times 2}{\underset{2}{M}} \underset{2 \times 2}{\underset{2}{M}} \quad$ where $A=\left(\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right)$
Is this a linear transformation? Yes
(if $M=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], A M=\left[t\left[\begin{array}{l}1 \\ 1\end{array}\right], s\left[\begin{array}{l}1 \\ 1\end{array}\right]\right]$)

What is the basis of $M_{2 \times 2} ? \quad E_{1}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right], E_{2}=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right], E_{3}=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right], E_{4}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ $\left\{E_{1}, E_{2}, E_{3}, E_{4}\right\}$ is a basis of $M_{2 \times 2}$
$T\left(E_{1}\right)=\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right], T\left(E_{2}\right)=\left[\begin{array}{ll}2 & 0 \\ 2 & 0\end{array}\right], T\left(E_{3}\right)=\left[\begin{array}{ll}0 & 2 \\ 0 & 2\end{array}\right], T\left(E_{4}\right)=\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right]$
$\operatorname{Im}(T)=\operatorname{span}\left\{\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right]\right\}$ because clearly $T\left(E_{2}\right)$ is twice $T\left(E_{1}\right) \& T\left(E_{3}\right)$ is twice $T\left(E_{4}\right)$

$$
\begin{aligned}
& \operatorname{Ker}(T)=\left\{M_{2 \times 2} \mid A M=0\right\} \\
& M=\left[x_{1} \mid x_{2}\right] \Rightarrow A M=\left[A x_{1} \mid A x_{2}\right]=0 \\
& A x_{1}=0 \quad x_{1}=t[2-1] t \in \mathbb{R} \\
& A x_{2}=0 \quad x_{2}=s[2-1] s \in \mathbb{R} \\
& M=\left[\begin{array}{cc}
t & s \\
-t & -s
\end{array}\right] \quad t, s \in \mathbb{R} \\
& \operatorname{Ker}(T)=\operatorname{span}\left\{\left(\begin{array}{cc}
2 & 0 \\
-1 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & 2 \\
0 & -1
\end{array}\right)\right\}
\end{aligned}
$$

$12 \quad 2018 / 02 / 15$

Definition
(one-to-one and onto linear transformations)

1. $T: V \rightarrow W$, is said to be one-to-one (or injective) if, whenever $T\left(\overrightarrow{u_{1}}\right)=T\left(\overrightarrow{u_{2}}\right)$, we have $\overrightarrow{u_{1}}=\overrightarrow{u_{2}}$
2. $T: V \rightarrow W$ is said to be onto (or surjective) if $W=J ? m(T)$

Remark

$T: V \rightarrow W$ is onto iff there is a spanning set $\left\{\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \ldots, \overrightarrow{u_{n}}, \ldots\right\}$ of V such that $\left\{T\left(\overrightarrow{u_{1}}\right), T\left(\overrightarrow{u_{2}}\right), \ldots, T\left(\overrightarrow{u_{n}}\right), \ldots\right\}$ is a spanning set of W
Proposition
$T: V \rightarrow W$, linear transformation is one-to-one iff $\operatorname{Ker}(T)=\left\{\overrightarrow{0_{V}}\right\}$
Proof
(\Rightarrow) Assume T is one-to-one
Recall $\operatorname{Ker}(T)=\left\{\vec{u} \in v \mid T(\vec{u})=\overrightarrow{0_{W}}\right\}$
Let $\vec{u} \in \operatorname{Ker}(T), T(\vec{u})=\overrightarrow{0_{W}}=T\left(\overrightarrow{0_{V}}\right)$
$\because T$ is one-to-one, $\quad \therefore \vec{u}=\overrightarrow{0_{V}}$
(\Leftarrow) Assume that $\operatorname{Ker}(T)=\left\{\overrightarrow{0_{V}}\right\}$
Let us prove that T is one-to-one
Let $\overrightarrow{u_{1}}, \overrightarrow{u_{2}} \in V$, such that

$$
\begin{align*}
T\left(\overrightarrow{u_{1}}\right) & =T\left(\overrightarrow{u_{2}}\right) \Rightarrow \\
T\left(\overrightarrow{u_{1}}-\overrightarrow{u_{2}}\right) & =\overrightarrow{0_{W}} \\
\text { ie } \overrightarrow{u_{1}}-\overrightarrow{u_{2}} \in K e r(T) & =\left\{\overrightarrow{0_{V}}\right\} \tag{20}\\
\overrightarrow{u_{1}}-\overrightarrow{u_{2}} & =\overrightarrow{0_{V}} \\
\text { ie } \overrightarrow{u_{1}} & =\overrightarrow{u_{2}}
\end{align*}
$$

Examples

1. $T: P_{2} \rightarrow P_{3}$

$$
\begin{array}{rlrl}
T(p)(x) & =\int_{0}^{x} p(t) d t & & \\
\operatorname{Ker}(T) & =\{p \mid T(p)=0\} \\
T(p)(x) & =0 & & \forall x \\
\frac{d}{d x}(T(p)(x)) & =0 & & \text { ie } p(x)=0 \quad \forall x \text { (By Fundamental theorem of calculus) } \\
\operatorname{Ker}(T) & =\{0\} & & \text { ie } T \text { is one-to-one } \tag{21}
\end{array}
$$

$\because T(p)(0)=0 \quad \forall p \in P_{2}$
\therefore the polynomial $f(x)=1 \quad \forall x$ does not belong to $\operatorname{Im}(T)$, ie $\operatorname{Im}(T) \neq P_{3}$ Exercise
Prove that $\operatorname{Im}(T)=\left\{p \in P_{3} \mid p(0)=0\right\}$
2. $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$
$T(X)=\underset{m \times n}{\underset{\underset{y y}{*}}{A} X}$
(a) T is one-to-one iff the homogeneous system $A X=0$ has a unique solution ie $\operatorname{Rank}(A)=n$
(b) T is onto iff $\operatorname{Col}(A)=\mathbb{R}^{m}$

$$
\text { ie } \operatorname{Rank}(A)=\operatorname{dim}(\operatorname{Col}(A))=m
$$

Remark

$$
T: V \rightarrow W
$$

Let \vec{w} be a fixed vector in W
Solving the equation $T \vec{u}=\vec{w}$
The set of all solutions is $T^{-1}(\{\vec{w}\})$
(a) $T^{-1}(\{\vec{w}\})$ can be empty (No solution)
(b) $T^{-1}(\{\vec{w}\})$ can have only one vector if $\vec{w} \in \operatorname{Im}(T)$ and T is one-to-one item $T^{-1}(\{\vec{w}\})$ has infinitely many vectors when $\vec{w} \in \operatorname{Im}(T)$ and $\operatorname{Ker}(T) \neq\left\{\overrightarrow{0_{V}}\right\}$

12.1 Isomorphism

Definition
A linear transformation $T: V \rightarrow W$ is said to be an isomorphism if T is one-to-one and onto
Examples

1. $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$
$T(X)=\underset{n \times n}{A} X$
T is an isomorphism iff $\operatorname{Rank}(A)=n$
2. $T: M_{n \times m} \rightarrow M_{m \times n}$
$T(A)=A^{T}$
Recall $\underset{\substack{x \times m}}{A} \in \operatorname{Ker}(T) \Leftrightarrow T(A)=A^{T}=\underset{m \times n}{0}$
$A=\left(A^{T}\right)^{T}=(\underset{m \times n}{0})^{T}=\underset{m \times n}{0}$
T is one-to-one
Let $B \in M_{m \times n}$
T is onto
T is an isomorphism
3. The coordinate map

If V is a vector space such that $\operatorname{dim}(V)=n$ and $\left\{\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \ldots, \overrightarrow{u_{n}}\right\}=B$ is a basis of V The map $T: V \rightarrow \mathbb{R}^{n}$
$T(\vec{u})=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right] \leftarrow$ coordinates of \vec{u} relative to B
is an isomorphism

Proposition

Let $T: V \rightarrow W$ be an isomorphism
The inverse transformation $T^{-1}: W \rightarrow V$ is a linear transformation, and is also an isomorphism
Proof
$T \circ T^{-1}(\vec{w})=\vec{w} \quad \vec{w} \in W$
$T^{-1} \circ T(\vec{v})=\vec{v} \quad \vec{v} \in V$
Let $\overrightarrow{w_{1}}, \overrightarrow{w_{2}} \in W, \alpha_{1}, \alpha_{2} \in \mathbb{R}$

$$
\begin{align*}
T^{-1}\left(\alpha_{1} \overrightarrow{w_{1}}+\alpha_{2} \overrightarrow{w_{2}}\right) & \stackrel{?}{=} \alpha_{1} T^{-1}\left(\overrightarrow{w_{1}}\right)+\alpha_{2} T^{-1}\left(\overrightarrow{w_{2}}\right) \\
T\left(T^{-1}\left(\alpha_{1} \overrightarrow{w_{1}}+\alpha_{2} \overrightarrow{w_{2}}\right)\right) & =\alpha_{1} \overrightarrow{w_{1}}+\alpha_{2} \overrightarrow{w_{2}} \\
T\left(\alpha_{1} T^{-1}\left(\overrightarrow{w_{1}}\right)+\alpha_{2} T^{-1}\left(\overrightarrow{w_{2}}\right)\right) & =\alpha_{1} T\left(T^{-1}\left(\overrightarrow{w_{1}}\right)\right)+\alpha_{2} T\left(T^{-1}\left(\overrightarrow{w_{2}}\right)\right) \tag{22}\\
& =\alpha_{1} \overrightarrow{w_{1}}+\alpha_{2} \overrightarrow{w_{2}}
\end{align*}
$$

$\because T$ is one-to-one
$T^{-1}\left(\alpha_{1} \overrightarrow{w_{1}}+\alpha_{2} \overrightarrow{w_{2}}\right)=\alpha_{1} T^{-1}\left(\overrightarrow{w_{1}}\right)+\alpha_{2} T^{-1}\left(\overrightarrow{w_{2}}\right)$
$\operatorname{Im}\left(T^{-1}\right)=V$
$\because \forall \vec{v} \in V$
$\vec{v}=T^{-1}(T(\vec{v})) \quad$ ie $\vec{v} \in \operatorname{Im}\left(T^{-1}\right)$
$\vec{w} \in \operatorname{Ker}\left(T^{-1}\right) \quad T^{-1}(\vec{w})=\overrightarrow{0_{V}}$
$\vec{w}=T\left(T^{-1}(\vec{w})\right)=T\left(\overrightarrow{0_{V}}\right)=\overrightarrow{0_{W}}$
$\operatorname{Ker}\left(T^{-1}\right)=\left\{\overrightarrow{0_{W}}\right\} \quad T^{-1}$ is one-to-one
T^{-1} is also an isomorphism

Exercise

Let $T: V \rightarrow W$ be an isomorphism and $B=\left\{\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \ldots, \overrightarrow{u_{n}}\right\}$ be a basis of V
Let $\overrightarrow{w_{i}}=T\left(\overrightarrow{u_{i}}\right)$
Prove that $\left\{\overrightarrow{w_{1}}, \overrightarrow{w_{2}}, \ldots, \overrightarrow{w_{n}}\right\}$ is a basis of W
$(\therefore \operatorname{dim}(V)=\operatorname{dim}(W))$
Dimension Theorem
(Generalization of the Rank Theorem)
$\mathbb{R}^{m} \rightarrow \mathbb{R}^{n} \quad \underset{n \times m}{\underset{\sim}{A}}$
$\underset{\operatorname{dim}(\operatorname{col}(A))=\operatorname{dim}(\operatorname{Im}(T))}{\operatorname{Real}(A)}+\underset{\operatorname{dim}(\operatorname{Ker}(T))}{\operatorname{dim}(N u l l(A))}=m$
Theorem
Let $T: V \mathbb{R} W$ be a linear transformation.
Assume $\operatorname{dim}(V)$ is finite
Then $\operatorname{dim}(V)=\operatorname{dim}(\operatorname{Ker}(T))+\operatorname{dim}(\operatorname{Im}(T))$

13 2018/02/20

TODO

$14 \quad 2018 / 02 / 22$

Midterm is on Chapter $4 \& 5$, and has 4 questions. Rooms will be announced tomorrow; try to get there 10 min early.

Examples

1. Given E, F are subspaces of V, prove that $E \oplus F \subseteq V$.

We already know that $E+F \subseteq V$, so we just need to show that $E \cap F=\left\{\overrightarrow{0_{v}}\right\}$

To prove equality, show that $\operatorname{dim}(V)=\operatorname{dim}(E)+\operatorname{dim}(F)$
2. If U is a subspace of V, W is a subspace of V, and $U \cup W$ is a subspace of V, prove that $U \subseteq W$ or $W \subseteq U$

If $U \nsubseteq W$ and $W \nsubseteq U$, take $\vec{u} \in U$ where $\vec{u} \notin W$, and $\vec{w} \in W$ where $\vec{w} \notin U$, then $\vec{u}+\vec{w} \notin U \cup W$
3. $T ; V \rightarrow W$
(a) E is a subspace of V

$$
\operatorname{dim}(T(E))=\operatorname{dim}(E)-\operatorname{dim}(\operatorname{Ker}(T) \cap E)
$$

Define $T_{1}: E \rightarrow T(E)$

$$
\begin{align*}
\operatorname{dim}(E) & =\underbrace{\operatorname{dim}\left(\operatorname{Im}\left(T_{1}\right)\right)}_{=\operatorname{dim}(T(E))}+\underbrace{\operatorname{dim}\left(\operatorname{Ker}\left(T_{1}\right)\right)}_{=\operatorname{dim}(\operatorname{EnKer}(T))} \\
\vec{u} \in \operatorname{Ker}\left(T_{1}\right) & \Leftrightarrow \vec{u} \in E \text { and } T(\vec{u})=\overrightarrow{0_{w}} \tag{23}\\
& \Leftrightarrow \vec{u} \in E \text { and } \vec{u} \in \operatorname{Ker}(T) \\
\operatorname{Ker}\left(T_{1}\right) & =\operatorname{Ker}(T) \cap E
\end{align*}
$$

15 2018/03/13

(Copied from someone else's notes)

15.1 Matrix Representation of Linear Transformation

$T: V \rightarrow V, \operatorname{dim}(V)=n$
If $B=\left\{\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \ldots, \overrightarrow{u_{n}}\right\}$ is a basis of V,
there exists a (unique) $n \times n$ matrix denoted $[T]_{B}$ such that $\forall u \in V$
$\underbrace{[T(\vec{u})]_{B}}_{\text {note1 }}=[T]_{B} \underbrace{[\vec{u}]_{B}}_{\text {note } 2}$
note 1: coordinates of $T(\vec{u})$ relative to B
note 2: coordinates of \vec{u} relative to B
Remark
Given that $B=\left\{\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \ldots, \overrightarrow{u_{n}}\right\}$, the $i^{\text {th }}$ column of $[T]_{B}$ is $\left[T\left(u_{i}\right)\right]_{B}$
Properties

1. If T_{1} and T_{2} are linear transformations from V into $V:\left[T_{1}+T_{2}\right]_{B}=\left[T_{1}\right]_{B}+\left[T_{2}\right]_{B}$

$$
\begin{align*}
\because \quad\left[\left(T_{1}+T_{2}\right)(u)\right]_{B} & =\left[T_{1}(u)+T_{2}(u)\right]_{B} \\
& =\left[T_{1}(u)\right]_{B}+\left[T_{2}(u)\right]_{B} \\
& =\left(\left[T_{1}\right]_{B}+\left[T_{2}\right]_{B}\right)[u]_{B} \tag{24}\\
\therefore \quad\left[\quad\left[T_{1}+T_{2}\right]_{B}\right. & =\left[T_{1}\right]_{B}+\left[T_{2}\right]_{B}
\end{align*}
$$

2. If $T: V \rightarrow V$ is a linear transformation and $\alpha \in \mathbb{R},[\alpha T]_{B}=\alpha[T]_{B}$
3. Let $T_{1}: V \rightarrow V, T_{2}: V \rightarrow V$ be 2 linear transformations. $\left[T_{1} \circ T_{2}\right]_{B}=\left[T_{1}\right]_{B}\left[T_{2}\right]_{B}$

$$
\begin{align*}
{\left[T_{1} \circ T_{2}(u)\right] } & =\left[T_{1}\left(T_{2}(u)\right)\right]_{B} \\
& =\left[T_{1}\right]_{B}\left[T_{2}(u)\right]_{B} \tag{25}\\
& =\left[T_{1}\right]_{B}\left[T_{2}\right]_{B}[u]_{B}
\end{align*}
$$

4. $T: V \rightarrow V$ is an isomorphism iff $[T]_{B}$ is invertible. Moreover, $\left[T^{-1}\right]_{B}=\left([T]_{B}\right)^{-1}$

15.2 Change of Basis

$T: V \rightarrow V \operatorname{dim}(V)=n$
$B=\left\{\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \ldots, \overrightarrow{u_{n}}\right\}$ and $S=\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}\right\}$

Let P be the $n \times n$ matrix such that every $i^{\text {th }}$ column is $\left[v_{i}\right]_{B}$ If $\vec{u} \in V$, then $[u]_{B}=P[u]_{S}$
$\vec{u}=\sum x_{i} v_{i} \quad[u]_{S}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right] \quad[u]_{B}=\sum_{i} x_{i}\left[v_{i}\right]_{B}=P\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]=P[u]_{S}$
P is the transition matrix from S to B

Let $u \in V$

$$
\begin{align*}
{[T(u)]_{S} } & =P^{-1}[T(u)]_{B} \\
& =P^{-1}[T]_{B}[u]_{B} \tag{26}\\
& =P^{-1}\left[T_{B}\right] P[u]_{S} \\
\therefore \quad[T]_{S} & =P^{-1}[T]_{B} P
\end{align*}
$$

Example

$$
\begin{align*}
& V=P_{2} \\
& T(p)(n)=x p^{\prime}(n) \\
& B=\left\{\begin{array}{lll}
1 & \underset{p_{1}}{x} & \underset{p_{2}}{x}, \\
\hline p_{3}
\end{array}\right\} \\
& S=\left\{\underset{q_{1}}{1+x}, \underset{q_{2}}{2 x-1},{\underset{q_{3}}{x}}_{x^{2}+x}^{\langle }\right\} \\
& T\left(p_{1}\right)(x)=0 \\
& T\left(p_{2}\right)(x)=x \\
& T\left(p_{3}\right)(x)=2 x^{2} \\
& {[T]_{B}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]} \tag{27}\\
& \operatorname{Null}\left([T]_{B}\right)=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right\}=\operatorname{Ker}(T) \\
& \operatorname{Ker}(T)=\left\{t p_{1}, t \in \mathbb{R}\right\}=\operatorname{span}\left\{p_{1}\right\} \\
& T\left(q_{1}\right)(x)=x=\frac{1}{3}\left(q_{1}+q_{2}\right) \\
& T\left(q_{2}\right)(x)=2 x=\frac{2}{3}\left(q_{1}+q_{2}\right) \\
& T\left(q_{3}\right)(x)=2 x^{2}+x=2\left(x^{2}+x\right)-x=2 q_{3}-\frac{1}{3}\left(q_{1}+q_{2}\right) \\
& {[T]_{B}=\left[\begin{array}{ccc}
\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\
\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\
0 & 0 & 2
\end{array}\right]}
\end{align*}
$$

Using the formula $[T]_{S}=P^{-1}[T]_{B} P$
$P=\left[\begin{array}{ccc}1 & =1 & 0 \\ 1 & 2 & 1 \\ 0 & 0 & 1\end{array}\right]$

$$
P^{-1}=\left[\begin{array}{ccc}
\frac{2}{3} & \frac{1}{3} & -\frac{1}{3} \\
-\frac{1}{3} & \frac{1}{3} & -\frac{1}{3} \\
0 & 0 & 1
\end{array}\right]
$$

15.2.1 Generalization

$T: V \rightarrow W$ is a linear transformation
$\operatorname{dim}(V)=n, B=\left\{\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \ldots, \overrightarrow{u_{n}}\right\}$ is a basis of V
$\operatorname{dim}(W)=m, S=\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}\right\}$ be a basis of W
There exists a unique $m \times n$ matrix
$[T]_{B, S}$ is called the matrix of T relative to the bases B and S such that $\forall u \in V$
$\underbrace{[T(u)]_{S}}_{m \times 1}=\underbrace{[T]_{B, S}}_{m \times n} \underbrace{[u]_{B}}_{n \times 1}$
Remark
The $j^{\text {th }}$ column of $[T]_{B, S}$ is $\left[T\left(u_{j}\right)\right]_{S}$
Example

$$
\begin{align*}
T & : P_{3} \rightarrow P_{2} \\
T(p(n) & =p^{\prime}(n) \\
B & =\left\{1, x, x^{2}, x^{3}\right\} \\
S & =\{\underset{q_{1}}{1+x}, \underbrace{2 x-1}_{q_{2}}, \underbrace{x^{2}+x}_{q_{3}}\} \\
3 x^{2} & =3\left[\left(x^{2}+x\right)-x\right] \tag{28}\\
& =3 q_{3}-3 x \\
& =3 q_{3}-q_{1}-q_{2} \\
{[T]_{B S} } & =\left[\begin{array}{cccc}
0 & \frac{2}{3} & \frac{2}{3} & -1 \\
0 & -\frac{1}{3} & \frac{2}{3} & -1 \\
0 & 0 & 0 & 3
\end{array}\right]
\end{align*}
$$

$16 \quad 2018 / 03 / 15$

Generalization

$$
T: V \rightarrow W
$$

- B is a basis of $V, \operatorname{dim}(V)=n$
- S is a basis of $W, \operatorname{dim}(W)=m$

Then there exists a unique $m \times n$ matrix
$[T]_{B, S}$ such that whenever $u \in V,[T(u)]_{S}=[T]_{B, S}[u]_{B}$
Proposition
Let V_{1}, V_{2}, V_{3} be 3 vector spaces. $\operatorname{dim}\left(V_{i}\right)=n_{i}$ and B_{i} is a basis of $V_{i}(i=1,2,3)$
Let $F: V_{1} \rightarrow V_{2}$ and $G: V_{2} \rightarrow V_{3}$ be a linear transformation.
$G \circ F: V_{1} \rightarrow V_{3}$ is a linear transformation such that
$\underbrace{[G \circ F]_{B_{1}, B_{3}}}_{n_{3} \times n_{1}}=\underbrace{[G]_{B_{2}, B_{3}}}_{n_{3} \times n_{2}} \underbrace{[F]_{B_{1}, B_{2}}}_{n_{2} \times n_{1}}$

Application
$\stackrel{V_{B} \xrightarrow{T} V_{B}}{[T]_{B}}$
$\uparrow I d \quad \downarrow I d$
$V_{S} \xrightarrow{T} V_{S} \quad[T]_{S}$

$$
\begin{align*}
T & \left.=\left.I d \circ T \circ I d \quad\right|_{S=\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}\right\}} ^{B=}\right\} \tag{29}\\
{[T]_{S} } & =[I d]_{B, S}[T]_{B}[I d]_{S, B}
\end{align*}
$$

Note that the column of $[I d]_{B, S}$ is $\left[u_{i}\right]_{S}$
Therefore $[I d]_{B, S}=P$, the transition matrix from B to S.
$[T]_{S}=P[T]_{B} P^{-1}$

16.1 Similar Matrices

Two $n \times n$ matrices A, B are said to be similar if there exists an invertible matrix P, such that $A=P B P^{-1}$
Remark

1. If A and B are similar, $\operatorname{det}(A)=\operatorname{det}(B)$
2. $\operatorname{tr}(\mathrm{A})=\operatorname{tr}(\mathrm{B})$

Discussed and got back midterms

17 2018/03/20

17.1 Inner Product

Review: Dot Product
$u, v \in \mathbb{R}^{n}$
$u \cdot v=\sum_{i=1}^{n} u_{i} v_{i}$ where $u=\left[\begin{array}{c}u_{1} \\ u_{2} \\ \vdots \\ u_{n}\end{array}\right] v=\left[\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right]$

Properties

$$
\begin{align*}
u \cdot v & =v \cdot u \\
\left(u_{1}+u_{2}\right) \cdot v & =u_{1} \cdot v+u_{2} \cdot v \\
(\alpha u) \cdot v & =\alpha(u \cdot v) \tag{30}\\
u \cdot u & =\sum_{i=1}^{n} u_{i}^{2} \geq 0
\end{align*}
$$

Cauchy-Schwarz Inequality
$|u \cdot v| \leq \sqrt{u \cdot u} \sqrt{v \cdot v}=\|u\|\|v\|$
If $u \neq 0$ and $v \neq 0$, then $\frac{|u \cdot v|}{\|u\|\|\|v\|} \leq 1 \quad$ ie $-1 \leq \frac{|u \cdot v|}{\|u\|\|v\|} \leq 1$
$\frac{|u \cdot v|}{\|u\|\|v\|}=\cos (\theta)$ where $\theta \in[0, \pi]$
θ is called the angle between u and v

Definition (Inner Product)
Let V be a vector space.
An inner product on V is a function denoted $\langle\rangle:, V \times V \rightarrow \mathbb{R}$.
(It associates to any pair $(u, v) \in V \times V$ as a number denoted $\langle u, v\rangle$)
Properties

1. $\langle u, v\rangle=\langle v, u\rangle \quad$ (Symmetry)
2. Whenever $u_{1}, u_{2}, v \in V \alpha_{1} \alpha_{2} \in \mathbb{R}$:

$$
\left\langle\alpha_{1} u_{1}+\alpha_{2} u_{2}, v\right\rangle=\alpha_{1}\left\langle u_{1}, v\right\rangle+\alpha_{2}\left\langle u_{2}, v\right\rangle
$$

3. $\langle u, u\rangle \geq 0$ and $\langle u, u\rangle=0$ iff $u=0_{v}$

Examples

1. $V=\mathbb{R}^{n}$
$\langle u, v\rangle=u \cdot v=\underbrace{[u]^{T}}_{1 \times n} \underbrace{[v]}_{n \times 1}$
2. $V=\mathbb{R}^{2} u_{1}=\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right] u_{2}=\left[\begin{array}{l}x_{2} \\ y_{2}\end{array}\right]$

$$
\begin{align*}
\left\langle u_{1}, u_{2}\right\rangle & =x_{1} x_{2}-y_{1} y_{2} \\
& =\left[\begin{array}{ll}
x_{1} & y_{1}
\end{array}\right]\left[\begin{array}{c}
x_{2} \\
-y_{2}
\end{array}\right] \\
& =\left[\begin{array}{ll}
x_{1} & y_{1}
\end{array}\right] \underbrace{\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]}_{A}\left[\begin{array}{l}
x_{2} \\
y_{2}
\end{array}\right] \tag{31}\\
& =\left[u_{1}\right]^{T} A\left[u_{2}\right]
\end{align*}
$$

(a)

$$
\begin{align*}
\left\langle u_{2}, u_{1}\right\rangle & =\left[u_{2}\right]^{T} A\left[u_{1}\right] \\
\left\langle u_{2}, u_{1}\right\rangle & =\underbrace{\left[u_{2}\right]^{T} A\left[u_{1}\right]}_{1 \times 1} \\
& =\left(\left[u_{2}\right]^{T} A\left[u_{1}\right]\right)^{T} \tag{32}\\
& =\left[u_{1}\right]^{T} A^{T}\left[u_{2}\right] \quad\left(A=A^{T}\right) \\
& =\left[u_{1}\right]^{T} A\left[u_{2}\right] \\
& =\left\langle u_{1}, u_{2}\right\rangle
\end{align*}
$$

(b)

$$
\begin{align*}
\left\langle\alpha_{1} u_{1}+\alpha_{2} u_{2}, v\right\rangle & =\left[\alpha_{1} u_{1}+\alpha_{2} u_{2}\right]^{T} A[v] \\
& =\left(\alpha_{1}\left[u_{1}\right]^{T}+\alpha_{2}\left[u_{2}\right]^{T}\right) A[v] \tag{33}\\
& =\alpha_{1}\left\langle u_{1}, v\right\rangle+\alpha_{2}\left\langle u_{2}, v\right\rangle
\end{align*}
$$

(c)

$$
\begin{align*}
\langle u, u\rangle & =[u]^{T} A[u] \\
& =x^{2}-y^{2} \quad \text { if }[u]=\left[\begin{array}{l}
x \\
y
\end{array}\right] \tag{34}
\end{align*}
$$

If $[u]=\left[\begin{array}{l}0 \\ 1\end{array}\right]$, then $\langle u, u\rangle=-1<0$
Therefore, \langle,$\rangle is not an inner product on V=\mathbb{R}^{2}$
3. $V=\mathbb{R}^{2}$

$$
\begin{aligned}
& \langle u, v\rangle=[u]^{T} A[v] \text { where } A=\left[\begin{array}{cc}
2 & -2 \\
-2 & 6
\end{array}\right] \\
& u_{1}=\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right] u_{2}=\left[\begin{array}{l}
x_{2} \\
y_{2}
\end{array}\right] \\
& \left\langle u_{1}, u_{2}\right\rangle=2 x_{1} x_{2}-2\left(x_{1} y_{2}+x_{2} y_{1}\right)+6 y_{1} y_{2}
\end{aligned}
$$

Since $A=A^{T},\langle u, v\rangle=\langle v, u\rangle$
It is clear that $\left\langle\alpha_{1} u_{1}+\alpha_{2} u_{2}, v\right\rangle=\alpha_{1}\left\langle u_{1}, v\right\rangle+\alpha_{2}\left\langle u_{2}, v\right\rangle$

$$
\left.\begin{array}{l}
\langle u, u\rangle
\end{array}=[u]^{T} A[u] \quad \text { if }[u]=\left[\begin{array}{l}
x \\
y
\end{array}\right] \quad \begin{array}{rl}
\langle u, u\rangle & =2 x^{2}-4 x y+6 y^{2} \\
& =2\left(x^{2}-2 x 6\right)+6 y^{2} \\
& =2\left((x-y)^{2}-y^{2}\right)+6 y^{2} \\
& =2(x-y)^{2}+4 y^{2} \geq 0
\end{array}\right\} \begin{aligned}
& \text { Moreover, }\langle u, u\rangle=0 \Leftrightarrow \begin{cases}x-y=0 \\
y=0 & \text { ie }[u]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]\end{cases}
\end{aligned}
$$

17.2 Diagonalization of A

(Based on example 3 above for $A=\left[\begin{array}{cc}2 & -2 \\ -2 & 6\end{array}\right]$)

1. Characteristic Polynomial

$$
\begin{align*}
P_{A} & =\operatorname{det}\left(A-\lambda I_{2}\right) \\
& =\operatorname{det}\left[\begin{array}{cc}
2-\lambda & -2 \\
-2 & 6-\lambda
\end{array}\right] \tag{37}\\
& =(\lambda-2)(\lambda-6)-4 \\
& =\lambda^{2}-8 \lambda+12-4 \\
& =\lambda^{2}-8 \lambda+8
\end{align*}
$$

2. Eigenvalues

$$
\begin{align*}
& \lambda_{1}=4+2 \sqrt{2} \\
& \lambda_{2}=4-2 \sqrt{2} \tag{38}
\end{align*}
$$

3. Eigenvectors

$$
\begin{array}{ll}
A-\lambda_{1} I_{2}=\left(\begin{array}{cc}
-2+2 \sqrt{2} & -2 \\
-2 & 2+2 \sqrt{2}
\end{array}\right): & x_{1}=\left[\begin{array}{c}
1 \\
-1+\sqrt{2}
\end{array}\right] \text { is an eigenvector } \\
A-\lambda_{2} I_{2}=\left(\begin{array}{cc}
-2-2 \sqrt{2} & -2 \\
-2 & 2-2 \sqrt{2}
\end{array}\right): & x_{2}=\left[\begin{array}{c}
1 \\
-1-\sqrt{2}
\end{array}\right] \text { is an eigenvector } \\
x_{1} \cdot x_{2}=1+\left((-1)^{2}-(\sqrt{2})^{2}\right)^{2}=0 &
\end{array}
$$

4. Diagonalization

$$
A=P D P^{-1}=\left[\begin{array}{cc}
1 & 1 \\
-1+\sqrt{2} & -1-\sqrt{2}
\end{array}\right]\left[\begin{array}{cc}
4-2 \sqrt{2} & 0 \\
0 & 4+2 \sqrt{2}
\end{array}\right]\left(\frac{1}{-2 \sqrt{2}}\left[\begin{array}{cc}
-1-\sqrt{2} & -1 \\
1-\sqrt{2} & 1
\end{array}\right]\right)
$$

18 2018/03/22

$\langle u, v\rangle=[u]^{T} A[v]$
$\langle u, v\rangle=\langle v, u\rangle$ for this property to hold, we need $A=A^{T}$; ie A must be symmetric $\langle u, v\rangle$ is clearly linear in u.
The last property: $\langle u, u\rangle \geq 0$ and $\langle u, u\rangle=0 \Leftrightarrow u=0$

Definition
A symmetric matrix A such that $[u]^{T} A[u] \geq 0 \forall u \in \mathbb{R}^{n}$ and $[u]^{T} A[u]=0$ only for $u=0$ is called a positive definite matrix
Example
I_{n} is an $n \times n$ positive definite matrix

Proposition

If A is positive definite, then $\langle u, v\rangle=[u]^{T} A[v]$ defines an inner product on \mathbb{R}^{n} Theorem
If A is a symmetric matrix then A is diagonalizable. Moreover, there exists a matrix Q such that $Q^{-1}=Q^{T}$ and $A=Q D Q^{T}$ where D is a diagonal matrix.
Remark

An $n \times n$ matrix, such that $Q^{-1}=Q^{T}$ (or equivalently $Q Q^{T}=Q^{T} Q=I_{n}$) is called an orthogonal matrix.
If x_{i} is the $i^{\text {th }}$ column of Q, then $x_{i}^{T} x_{i}=1$ and $x_{i}^{T} x_{j}=0$ whenever $i \neq j$
Example
($n=2$)
$A=\left[\begin{array}{ll}5 & 1 \\ 1 & 5\end{array}\right]$

$$
\begin{align*}
P_{A}(\lambda) & =\operatorname{det}\left(A-\lambda I_{2}\right) \\
& =(\lambda-5)^{2}-1 \\
& =(\lambda-6)(\lambda-4) \tag{39}
\end{align*}
$$

$$
\lambda_{1}=6
$$

$$
\lambda_{2}=4
$$

- $\lambda_{1}=6 \quad A-\lambda_{1} I_{2}=\left(\begin{array}{cc}-1 & 1 \\ 1 & -1\end{array}\right)$

$$
\left.A-\lambda_{1} I_{2}\right) X=0 \Leftrightarrow X=t\left[\begin{array}{l}
1 \\
1
\end{array}\right] t
$$

- $\lambda_{2}=4 \quad A-\lambda_{2} I_{2}=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$

$$
\left.A-\lambda_{2} I_{2}\right) X=0 \Leftrightarrow X=t\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

$A=P D P^{-1}$ where $D=\left[\begin{array}{ll}6 & 0 \\ 0 & 4\end{array}\right], P=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$
Choose $Q=\left[\begin{array}{cc}\frac{1}{\sqrt{V}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right] \quad Q$ is an orthogonal matrix $\quad A=Q D Q^{T}$
Question
$\overline{\text { Is }\langle u, v\rangle}=[u]^{T} A[v]$ an inner product in \mathbb{R}^{2} ? Equivalently, is A a positive definite matrix?

$$
\begin{align*}
\langle u, u\rangle & =[u]^{T} A[u] \\
& =[u]^{T} Q D Q^{T}[u] \tag{40}\\
& =\left(Q^{T}[u]\right)^{T} D\left(Q^{T}[u]\right)
\end{align*}
$$

Let S be the basis of \mathbb{R}^{2} such that
$[u]_{S}=Q^{T}[u] \quad S=\left\{\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}\end{array}\right],\left[\begin{array}{c}-\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}\end{array}\right]\right\}$
$\langle u, u\rangle=[u]_{S}^{T} D[u]_{S} \quad$ if $[u]_{S}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$
$\langle u, u\rangle=\lambda_{1} x_{1}^{2}+\lambda_{2} x_{2}^{2}$
This defines an inner product iff $\lambda_{1}>0$ and $\lambda_{2}>0$
$A=\left[\begin{array}{ll}5 & 1 \\ 1 & 5\end{array}\right]$
$u=\left[\begin{array}{l}x \\ y\end{array}\right] \quad v=\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]$

$$
\begin{align*}
\langle u, v\rangle & =5 x x^{\prime}+\left(x y^{\prime}+x^{\prime} y\right)+5 y y^{\prime} \\
\langle u, u\rangle & =5 x^{2}+2 x y+5 y^{2} \tag{41}\\
& =6 x_{1}^{2}+4 y_{1}^{2}
\end{align*}
$$

Exercise
Let $A=\left[\begin{array}{ccc}-4 & -2 & 4 \\ -2 & -1 & 2 \\ 4 & 2 & -4\end{array}\right]$

1. Find Q such that $A=Q D Q^{T} ; Q$ is the orthogonal matrix, and D is the diagonal matrix
2. is $\langle u, v\rangle=[u]^{T} A[v]$ an inner product in \mathbb{R}^{3} ?
$\underline{\text { Other examples of inner product }}$
3. Let $V=P_{n}$
$\langle p, q\rangle=\int_{0}^{1} p(t) q(t) d t$
(Example: $p(t)=t, q(t)=t-1,\langle p, q\rangle=\int_{0}^{1} t(t-1) d t=-\frac{1}{6}$)
(a)

$$
\begin{align*}
\langle q, p\rangle & =\int_{0}^{1} q(t) p(t) d t \\
& =\int_{0}^{1} p(t) q(t) d t=\langle p, q\rangle \tag{42}
\end{align*}
$$

(b)

$$
\begin{align*}
\left\langle p_{1}+p_{2}, q\right\rangle & =\int_{0}^{1}\left(p_{1}(t)+p_{2}(t)\right) q(t) d t \\
& =\int_{0}^{1} p_{1}(t) q(t) d t+\int_{0}^{1} p_{2}(t) q(t) d t \tag{43}\\
& =\left\langle p_{1}, q\right\rangle+\left\langle p_{2}, q\right\rangle
\end{align*}
$$

(c)

$$
\begin{align*}
\langle p, p\rangle=0 & \Leftrightarrow \int_{0}^{1} p^{2}(t) d t=0 \\
& \Leftrightarrow p^{2}(t)=0 \quad \forall t \in(0,1) \tag{44}\\
& \Leftrightarrow p(t)=0 \quad \forall t \in(0,1)
\end{align*}
$$

$$
\begin{aligned}
& x_{i}=\frac{1}{i} \quad i=1,2,3, \ldots, n \\
& x_{i} \in(0,1) \quad P\left(x_{i}\right)=0 \\
& p(t)=C\left(x-x_{i}\right) \ldots\left(x-x_{n}\right) \\
& p\left(x_{n+1}\right)=0 \Leftrightarrow C\left(x_{n+1}-x_{i}\right) \ldots\left(x_{n+1}-x_{n}\right)=0 \Rightarrow C=0 \therefore p=0
\end{aligned}
$$

$$
\text { Let } \underset{\text { weight function }}{\rho(t)>0} \text { on }(0,1)
$$

$$
\langle p, q\rangle_{\rho}=\int_{0}^{1} \rho(t) p(t) q(t) d t
$$

2. $V=M_{n \times n}$

$$
\langle A, B\rangle=\operatorname{tr}\left(A^{T} B\right)
$$

(a)

$$
\begin{align*}
\langle B, A\rangle & =\operatorname{tr}\left(B^{T} A\right) \\
& =\operatorname{tr}\left(\left(B^{T} A\right)^{T}\right) \tag{45}\\
& =\operatorname{tr}\left(A^{T} B\right) \\
& =\langle A, B\rangle
\end{align*}
$$

(b)

$$
\begin{align*}
\langle A, A\rangle & =\operatorname{tr}\left(A^{T} A\right) \\
A & =\left(a_{i j}\right) \tag{46}\\
\operatorname{tr}\left(A^{T} A\right)=\sum_{i}\left(A^{T} A\right) &
\end{align*}
$$

Let x_{i} be the $i^{\text {th }}$ column of A

$$
\left(A^{T} A\right)_{i i}^{n}=X_{i}^{T} x_{i}
$$

$$
\begin{align*}
& \operatorname{tr}\left(A^{T} A\right)=\sum_{i=1}^{r} x_{i}^{T} x_{i} \geq 0 \\
& \text { also } \\
& \qquad \begin{array}{l}
\langle A, A\rangle=0 \Rightarrow \quad x_{i}^{T} x_{i}=0 \quad \forall i \\
\\
\\
\text { ie } \quad x_{i}=\underset{n \times 1}{0} \quad \forall i \\
\\
\\
\text { ie } A=\underset{n \times n}{0}
\end{array}
\end{align*}
$$

Cauchy-Schwarz Inequality
Proposition
Let \langle,$\rangle be an inner product on a vector space V$
$\left.\langle u, v\rangle\right|^{2} \leq\langle u, u\rangle\langle v, v\rangle$
Proof
Let $u, v \in V$ be fixed
Define $F(t)=\langle u+t v, u+t v\rangle$
Note that $F(t) \geq 0 \quad \forall t$
Also $F(t)=\langle u, u\rangle+2 t\langle u, v\rangle+t^{2}\langle v, v\rangle$
Therefore the discriminant $\Delta^{\prime}=\langle u, v\rangle^{2}-\langle u, u\rangle\langle v, v\rangle \leq 0$

19 2018/03/27

$\backslash \backslash$ TODO
$20 \quad 2018 / 03 / 29$
$\backslash \backslash$ TODO

21 2018/04/03

Exercises

1. Assume that E, R are 2 subspaces of V such that $E \perp F$.

Prove that $P_{E \oplus F}=P_{E}+P_{F}$
2. Does the above hold if E is not orthogonal to F ?

21.1 More about Projections

21.1.1 \mathbb{R}^{n} with the usual dot project

If $T, \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear transformations, let $[T]$ be the standard matrix of T.
What are the condition(s) on $[T]$ so that $[T]$ is the standard matrix of an orthogonal projection onto a subspace E of \mathbb{R}^{n} ?

If T is an orthogonal projection
$\left.T^{2}(u)=T \underset{\in E}{(T(u)}\right)=T(u), T^{2}=T,[T]^{2}=[T]$
$\mathbb{R}^{n}=\operatorname{Ker}(T) \oplus \operatorname{Im}(T) \quad E=\operatorname{Im}(T)$
If T is an orthogonal projection, we must also have $\operatorname{Ker}(T) \perp \operatorname{Im}(T)$
$\backslash \backslash$ TODO add spans
$u=\left[\begin{array}{l}x \\ y\end{array}\right]=(x-y)\left[\begin{array}{l}1 \\ 0\end{array}\right]+y\left[\begin{array}{l}1 \\ 1\end{array}\right]$
Let $[T(u)]=\left[\begin{array}{l}y \\ y\end{array}\right]=[T]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$
$[T]^{2}=[T], \operatorname{Ker}(T)=\operatorname{span}\{\vec{i}\}, \operatorname{Im}(T)=\operatorname{span}\{\vec{i}+j\}$

For T to be an orthogonal projection on $\operatorname{Im}(T)$, we must have $\operatorname{Im}(T) \perp \operatorname{Ker}(T)$ ie $\forall u, v \in \mathbb{R}^{n}$

$$
\begin{align*}
\langle T(u), v-T(v)\rangle & =0 \\
\langle T(u), v\rangle & =\langle T(u), T(v)\rangle=\langle u, T(V)\rangle \\
\langle T(u), v\rangle & =\langle u, T(v)\rangle \tag{48}\\
{[T(u)]^{T}[v] } & =\langle u\rangle^{T}\langle T(v)\rangle \\
{[[T][u]]^{T}[v] } & =[u]^{T}[T][v]
\end{align*}
$$

Proposition
Let P be an $n \times n$ matrix such that $P^{2}=P . P$ is the standard matrix of an orthogonal projection iff $P^{T}=P$
Example
From lecture 18:
$A=\left[\begin{array}{ll}5 & 1 \\ 1 & 5\end{array}\right] \quad$ eigenvalues: $\lambda_{1}=6, \lambda_{2}=4$
$\lambda=6 \Rightarrow E_{6}=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}=\operatorname{span}\left\{\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}\end{array}\right]\right\}$
$\lambda=4 \Rightarrow E_{4}=\operatorname{span}\left\{\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right\}=\operatorname{span}\left\{\left[\begin{array}{c}-\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}\end{array}\right]\right\}$
$A=Q D Q^{T}$ where $Q=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right], D=\left[\begin{array}{ll}6 & 0 \\ 0 & 4\end{array}\right]$

Exercise

Prove that $A=6 P_{E_{6}}+4 P_{E_{4}}$

22 2018/04/05

$\backslash \backslash$ TODO away

23 2018/04/10

$$
\begin{align*}
(E+F)^{\perp} & =E^{\perp} \cap F^{\perp} \\
\text { If } E \perp F \text { then } P_{E \oplus F} & =P_{E}+P_{F} \tag{49}
\end{align*}
$$

Exercise
If $P_{E+F}=P_{E}+P_{F}$, is it necessary that $E \perp F ? E, F$ are subspaces of V.
$T: V \rightarrow V$ is an isomorphism iff $\underbrace{[T]_{B}}_{n \times n}$ is invertible.
Let $\underset{n \times 1}{\underset{\sim}{X}}$ be such that $[T]_{B} X=0$
Let $v \in V$ such that $[v]_{B}=X$

$$
\begin{align*}
{[T(v)]_{B} } & =[T]_{B}[v]_{B} \\
& =[T]_{B} X=0 \tag{50}\\
\therefore \quad T(v) & =0_{v} \Rightarrow v=0_{v} \Rightarrow X=0
\end{align*}
$$

To prove the reverse, assume that $[T]_{B}$ is invertible. Let us prove that $\operatorname{Ker}(T)=\left\{0_{v}\right\}$, which is enough to show that T is an isomorphism.

Let $v \in \operatorname{Ker}(T), T(v)=0_{v}$
$[T(v)]_{B}=0$, ie $[T]_{B}[v]_{B}=0$
Since $[T]_{B}$ is invertible, we must have $[v]_{B}=0$, ie $v=0_{v}$
If E is a subspace of $V, E \subseteq\left(E^{\perp}\right)^{\perp}$
Let $u \in E, \quad \forall v \in E^{\perp}$ $\langle u, v\rangle=0 \Rightarrow u \in\left(E^{\perp}\right)^{\perp}, E \subseteq\left(E^{\perp}\right)^{\perp}$

