
Allan Wang 

1 

 

Math 240 
Dr. Evan DeCorte http://www.math.mcgill.ca/~edecorte/math240/  

 

Intro .............................................................................................................................................................. 5 

Symbols ........................................................................................................................................................ 5 

Lecture 1 – 2016/09/07 ............................................................................................................................. 6 

Propositional Logic ................................................................................................................................. 6 

Logic Laws ............................................................................................................................................ 6 

Contrapositive Examples ........................................................................................................................ 6 

Lecture 2 – 2016/09/09 ............................................................................................................................. 7 

Conditionals ............................................................................................................................................. 7 

Lecture 3 – 2016/09/12 ............................................................................................................................. 8 

Translation Examples ............................................................................................................................. 8 

Translation Recap................................................................................................................................ 8 

Equivalence, Converse, & Contrapositive .............................................................................................. 8 

Lecture 4 – 2016/09/14 ............................................................................................................................. 9 

Tautologies, Contradictions, & Contingencies ...................................................................................... 9 

Lecture 5 – 2016/09/16 ........................................................................................................................... 10 

Sets ......................................................................................................................................................... 10 

Set operations .................................................................................................................................... 10 

Lecture 6 – 2016/09/19 ........................................................................................................................... 11 

Order of precedence for logical connectives ....................................................................................... 11 

Set Identities .......................................................................................................................................... 11 

List ...................................................................................................................................................... 11 

Predicate Logic ...................................................................................................................................... 11 

Lecture 7 – 2016/09/21 ........................................................................................................................... 12 

Predicate Logic (cont) ........................................................................................................................... 12 

Lecture 8 – 2016/09/23 ........................................................................................................................... 13 

Negations in Predicate Logic (cont) .................................................................................................... 13 

Negations of existential statements ................................................................................................. 13 

Lecture 9 – 2016/09/26 ........................................................................................................................... 14 

Axiomatic system .................................................................................................................................. 14 

http://www.math.mcgill.ca/~edecorte/math240/


Allan Wang 

2 

 

Lecture 10 – 2016/09/28 ......................................................................................................................... 15 

Motivation for axiomatic systems ........................................................................................................ 15 

First order theories ............................................................................................................................... 15 

Applications of Logic ............................................................................................................................. 15 

Other Logics ........................................................................................................................................... 15 

Lecture 11 – 2016/09/30 ......................................................................................................................... 16 

Mathematical Induction ........................................................................................................................ 16 

Lecture 12 – 2016/10/03 ......................................................................................................................... 17 

Mathematical Induction (cont) ............................................................................................................ 17 

Direct Proof ............................................................................................................................................ 17 

Contrapositive Proof ............................................................................................................................. 17 

Lecture 13 – 2016/10/05 ......................................................................................................................... 18 

Proof by Contradiction .......................................................................................................................... 18 

Proof by Cases ........................................................................................................................................ 18 

Divisors .................................................................................................................................................. 18 

Euclid’s Algorithm ............................................................................................................................. 18 

Lecture 14 – 2016/10/07 ......................................................................................................................... 19 

Euclid’s Algorithm (cont) ..................................................................................................................... 19 

Congruences .......................................................................................................................................... 19 

Lecture 15 – 2016/10/12 ......................................................................................................................... 20 

Modular Arithmetic ............................................................................................................................... 20 

Justification for Arithmetic Mod M .................................................................................................. 20 

Fermat’s Little Theorem ....................................................................................................................... 20 

Fundamental Theorem of Arithmetic .................................................................................................. 20 

Lecture 16 – 2016/10/14 ......................................................................................................................... 21 

Cryptography Examples ........................................................................................................................ 21 

RSA encryption .................................................................................................................................. 21 

Lecture 17 – 2016/10/17 ......................................................................................................................... 22 

Primality Testing ................................................................................................................................... 22 

Miller-Rabin Test ................................................................................................................................... 22 

Lecture 18 – 2016/10/19 ......................................................................................................................... 23 

Midterm .................................................................................................................................................. 23 

Number Theory ................................................................................................................................. 23 

Logic ................................................................................................................................................... 23 



Allan Wang 

3 

 

Lecture 19 is a review ............................................................................................................................... 23 

Lecture 20 – 2016/10/26 ......................................................................................................................... 24 

Lecture 21 – 2016/10/28 ......................................................................................................................... 25 

Binomial Theorem ................................................................................................................................. 25 

Special Cases ...................................................................................................................................... 25 

Pascal’s Triangle ................................................................................................................................ 25 

Lecture 22 – 2016/10/31 ......................................................................................................................... 26 

Pigeonhole Principle ............................................................................................................................. 26 

Lecture 23 – 2016/11/02 ......................................................................................................................... 27 

Pigeonhole Principle Continued ........................................................................................................... 27 

Counting Techniques ............................................................................................................................ 27 

Cyclic Orderings..................................................................................................................................... 27 

Lecture 24 – 2016/11/04 ......................................................................................................................... 28 

Principle of Inclusion-Exclusion ........................................................................................................... 28 

Intersecting Set Systems ....................................................................................................................... 28 

Lecture 25 – 2016/11/07 ......................................................................................................................... 29 

Erdõs-Ko-Rados ..................................................................................................................................... 29 

Graphs .................................................................................................................................................... 29 

Examples ............................................................................................................................................ 29 

Lecture 26 – 2016/11/09 ......................................................................................................................... 30 

Handshaking Lemma............................................................................................................................. 30 

Degrees ................................................................................................................................................... 30 

Walks & Paths ........................................................................................................................................ 30 

The first theorem of graph theory ....................................................................................................... 30 

Lecture 27 – 2016/11/11 ......................................................................................................................... 31 

Hamilton Cycles ..................................................................................................................................... 31 

Thm: Dirac 1952 ................................................................................................................................ 31 

Lecture 28 – 2016/11/14 ......................................................................................................................... 32 

Subgraphs .............................................................................................................................................. 32 

Graph Isomorphism .............................................................................................................................. 32 

Trees ....................................................................................................................................................... 32 

Spanning Tree .................................................................................................................................... 32 

Lecture 29 – 2016/11/16 ......................................................................................................................... 33 

Spanning Trees (cont) .......................................................................................................................... 33 



Allan Wang 

4 

 

Counting Trees....................................................................................................................................... 33 

Tree Encoding (Prüfer Code) ............................................................................................................... 33 

Lecture 30 – 2016/11/18 ......................................................................................................................... 34 

Prüfer codes (cont) ............................................................................................................................... 34 

Lecture 31 – 2016/11/21 ......................................................................................................................... 35 

Graph Colouring .................................................................................................................................... 35 

Greedy Algorithm for Colouring ........................................................................................................... 35 

Lecture 32 – 2016/11/23 ......................................................................................................................... 36 

Colouring ................................................................................................................................................ 36 

Bipartite Graphs .................................................................................................................................... 36 

The Marriage Theorem ......................................................................................................................... 36 

Lecture 33 – 2016/11/25 ......................................................................................................................... 37 

The Marriage Theorem ......................................................................................................................... 37 

Proof of the Marriage Theorem ........................................................................................................ 37 

Planar Graphs ........................................................................................................................................ 37 

Lecture 34 – 2016/11/28 ......................................................................................................................... 38 

Euler’s Theorem .................................................................................................................................... 38 

Lecture 35 – 2016/11/30 ......................................................................................................................... 39 

Map Colouring ....................................................................................................................................... 39 

 

  



Allan Wang 

5 

 

Intro 
 Office hours Friday 11:30-12:30  1120 Burnside 

 Math help desk burnside 911  12:00 – 5:00 every weekday 

 Grading 20% homework [20% midterm 60% final] [80% final] 

 6 hw assignments, best 5 will count 
o Submit homework to mailbox at room 1005 Burnside before 4:30pm 

o Cite sources if used 

 Topics 
o Symbolic Logic – abstract reasoning for true false type questions 

o Number Theory – methodical study of integers and related structures 

o Combinatorics – branch of mathematics which studies finite/discrete things 

o Graph Theory – a graph is a set V, together with another set E consisting of 

unordered pairs of elements from V  

 Elements of V are called vertices, elements of E are called edges 

Symbols 
 ∪ or for sets 

 ∩ and for sets 

 ∨ or for logic 

 ∧ and for logic 

 𝟙 always true (proposition) 

 𝟘 always false (proposition) 

 ∀  universal quantifier 

 ∃ existential quantifier 

 ¬  negation 

 | divides 

 ∤ does not divide 

 ⊕ exclusive or 
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Lecture 1 – 2016/09/07 
 TA Office hours Monday 11:30 – 12:30 Burnside 1032 

 Tutorial tentatively Tue 10:30 – 11:30  

Propositional Logic 
 Suggested reading: Hammock 

 A proposition or statement is an assertion which is either definitely true or definitely false 

 Proposition typically denoted with letters, conventionally P, Q, R, … and are called atoms 

 Propositional calculus is a language for expressing complex statements, together with a set 
of rules for deciding whether they are true or false 

 Logical connections 
o AND – P ∩ Q – conjunction – both true 

o OR – P ∪ Q – disjunction – at least one is true 

o NOT – ¬P – negation 

o ⟺ – equivalence – if and only if 

 Truth tables give a way to decide the truth value of a complex statement given the truth 

values of the atoms used to build it 

 Proved that ¬(¬P ∪ ¬Q) ⟺ P ∩ Q and ¬(¬P ∩ ¬Q) ⟺ P ∪ Q, known as the DeMorgan laws 

Logic Laws 
 Double negation ¬¬P ⟺ P 

 Idempotent P ∩ P ⟺ P P ∪ P ⟺ P 

 Absorption P ∪ (P ∩ Q) ⟺ P P ∩ (P ∪ Q) ⟺ P 

 Commutativity P ∩ Q ⟺ Q ∩ P P ∪ Q ⟺ Q ∪ P 

 Associativity P ∩ (Q ∩ R) ⟺ (P ∩ Q) ∩ R P ∪ (Q ∪ R) ⟺ (P ∪ Q) ∪ R) 

 Distributivity P ∩ (Q ∪ R) ⟺ (P ∩ Q) ∪ (P ∩ R) P ∪ (Q ∩ R) ⟺ (P ∪ Q) ∩ (P ∪ R) 

 DeMorgan laws (see above) 

 Jump to Set Identities 

Contrapositive Examples 
 Theorem – let n be an integer; if n2 is even (P), then n is even (Q) 

o Translation: prove P ⇒ Q  

o Contrapositive: prove ¬Q ⇒ ¬P if n is odd, n2 is odd 

o True as the product of two odd numbers is always odd 

 Theorem – where a & b ∈ ℝ; if a * b is irrational (P), then either a or b is irrational (Q ∪ R) 
o Translation: prove P ⇒ (Q ∪ R) 

o Contrapositive: prove ¬Q ∩ ¬R ⇒ ¬P  if a & b are both rational, a * b is rational 

 

 Converse – converse of P ⇒ Q is Q ⇒ P Not equivalent 
o Ie If a number is divisible by 6, it is even; If a number is even, it is divisible by 6 
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Lecture 2 – 2016/09/09 

 𝟙, T – proposition is always true 

 𝟘, F – proposition is always false 

 Identity P ∩ T ⟺ P  P ∪ T ⟺ T 

 Domination P ∩ 0 ⟺ 𝟘  P ∪ 𝟘 ⟺ P 

 Statements built up from atoms are called sentences (eg ¬(P ⇒ Q) ⇒ K) 

 Tautology – sentence which is true for all possible truth values of the atoms 

 Contradiction – sentence is false for all possible truth assignments to the atoms 

 Contingency – sentence is sometimes true and sometimes false 

Conditionals 
 If – P ⇒ Q – if P then Q, P implies Q, Q if P, Q whenever P, whenever P then also Q,  

P is sufficient for Q, Q is necessary for P, P only if Q 

P Q P ⇒ Q 

T T T 

T F F 

F T T 

F F T 
 

o P ⇒ Q is implication, P is hypothesis, Q is conclusion 

o Implication should only fail if the conclusion is false even though the hypothesis is 

true 

o When the hypothesis is false, the implication says nothing about the conclusion 

o Cards example  E, K, 4, 7  location 1, 2, 3, 4 

 Check implication: vowel on one side ⇒ even number on other side 

 For loc2, hypothesis is false 

 For loc3, conclusion is true 

 Implications are true for loc2 and loc3, therefore we only need to turn over 

loc1 and loc4 
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Lecture 3 – 2016/09/12 
Translation Examples 

 If you study (S), then you will pass (P) 
o S ⇒ P 

o P ⇏ S You can also pass without studying 

 You can only make a withdrawal (W) if you have money in your account (A) 
o W ⇒ A 

o A ⇏ W Having money in your account doesn’t guarantee you can make a withdrawal 

 I cry (C) whenever I see the stars (S) 
o S ⇒ C 

o C ⇏ S You can cry without seeing stars as well 

 Alfred only rides his bike (A) when it’s sunny (S) 

o A ⇒ S 

o S ⇏ A Just because it’s sunny doesn’t mean Alfred is riding a bike 

 Alfred rides his bike (A) whenever it’s sunny (S) 
o S ⇒ A 

o A ⇏ S Alfred could also ride a bike when it’s rainy 

 The sun is out (S) but it’s raining (R) 
o S∩R 

 I will cancel the trip (¬T) unless Kate comes along (K) 
o T ⇒ K ¬K ⇒ ¬T 

o K ⇏ T If Kate decides to come, the trip may still be cancelled 

 To learn logic (L), all you have to do is pay attention (P) 

 Paying attention (P) is sufficient for learning logic (L) 

o P ⇒ L 

o L ⇏ P There may be other ways to learn logic; if you learned, you might not 

necessarily have paid attention 

 If you only study (S) when you are under pressure (P), you will not learn (¬L) 

o (S ⇒ P) ⇒ ¬L 

o Split this into two parts when translating 

Translation Recap 
 If A, then B; Only A if B; A is sufficient for B; ¬A unless B A ⇒ B 

 A whenever B; to A, do B B ⇒ A 

 When finding which proposition is necessary, use the truth table 

o  If A can be true while B is false, A ⇏ B 

  Just because your translation is true doesn’t mean it has the same meaning as the given 

statement 

Equivalence, Converse, & Contrapositive 
 Equivalence – P if and only if Q – P ⇔ Q – (P ⇒ Q) ∩ (Q ⇒ P) 

 Contrapositive – for P ⇒ Q, is ¬Q ⇒ ¬P 
o The two above are equivalent; sometimes the 

contrapositive is easier to prove  

P Q P ⇒ Q ¬Q ⇒ ¬P 

T T T T 

T F F F 

F T T T 

F F T T 
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Lecture 4 – 2016/09/14 
 Theorem – proven mathematical fact 

Tautologies, Contradictions, & Contingencies 
 P ∩ (P ∪ Q)  (absorption rule) P  contingency 

 Checking by truth table takes a lot of time; instead, consider using rules of logic 

 P ∪ (P ∩ Q) ∪ (P ⇒ Q) Rule used 
o ≡ P ∪ (P ∩ Q) ∪ (¬P ∪ Q) (P ⇒ Q) ≡ ¬P ∪ Q 

o ≡ P ∪ (¬P ∪ Q) absorption 

o ≡ (P ∪ ¬P) ∪ Q associativity 

o ≡ 𝟙 ∪ Q complementarity 

o ≡ 𝟙 domination 

o Tautology 

 Island of knights & knaves – knights always tell truth; knaves always lie 
You meet two inhabitants, A & B; A says “Either I am knave, or B is knight” 

What are A & B? 

o Atoms: P – A is knight, Q – B is knight 

o Translation: P ⇔ ¬P ∪ Q 

o From truth table: contingency 
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Lecture 5 – 2016/09/16 
 Continuation of Knights & Knaves 

 A says, “I’m a knave, but B isn’t” 

 P ⇔ ¬P ∩ Q 

 P ∩ (¬P ∩ Q) ∪ (¬P ∩ ¬(¬P ∩ Q))  X ⇔ Y → (X ∩ Y) ∪ (¬X ∩ ¬Y)  

 ≡ 𝟘 ∪ (¬P ∩ ¬(¬P ∩ Q)) associativity 

 ≡ ¬P ∩ (¬¬P ∪ ¬Q) complementarity 

 ≡ (¬P ∩ P) ∪ (¬P ∩ ¬Q) distributivity 

 ≡ ¬P ∩ ¬Q A and B must both be knaves 

Sets 
 Collection of distinct objects called elements 

 Examples 
o ℕ = {1, 2, 3, 4, …} 

o ℤ = {…, -2, -1, 0, 1, 2, …} 

o ℚ = {a/b: a, b, ∈ ℤ, b ≠ 0} 

o ℝ = set of real numbers 

 ∅ = {}, the empty set 

 U denotes the entire universe (all things) 

 X ∈ A → x is an element of set A X ∉ A → x is not an element of set A 

 Subset – A ⊆ B – A is a subset of B if every element of A is an element of B 

 Superset – B ⊇ A – if A is a subset of B, B is a superset of A  
o ∅ ⊆ ℕ ⊆ ℤ ⊆ ℚ ⊆ ℝ 

 Cardinality – number of elements of set 

o |A| = # |∅| = 0, |ℤ| = ∞ 

Set operations 
 (of sets A and B) 

 *Note ∧ = and for logic, ∩ = and for sets 
            ∨ = or for logic,    ∪ = or for sets 

 Intersection – set of all elements belonging to both A and B 

o A ∩ B = {x: x ∈ A ∧ x ∈ B} 

 Union – set of elements contained in either A or B 
o A ∪ B = {x: x ∈ A ∨ x ∈ B} 

 Difference – set of elements in A that aren’t in B 
o A \ B = A – B = {x: x ∈ A, x ∉ B} 

o A \ B is sometimes called the complement of B in A 

 Symmetric difference – set of elements contained either in A or in B, but not both 

(exclusive “or”) 

o A Δ B = {x: x ∈ A ∪ B, x ∉ A ∩ B} 
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Lecture 6 – 2016/09/19 
Order of precedence for logical connectives 

 No standard agreement, but the following will be used 

 ¬ ≫ ∪, ∩ ≫ ⇒, ⇐ ≫ ⇔  

 ¬A ∪ B ⇒ C becomes (((¬A) ∪ B) ⇒ C) 

 Avoid ambiguous notation such as A ∩ B ∪ C 
o Due to association, parentheses are sometimes dropped in cases like A ∩ B ∩ C 

Set Identities 
 Theorem A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) (law of distributivity) 

 Proof – to show X = Y, show X ≡ Y and Y ≡ X 
o ∎ is a symbol for the end of a proof   

 Show A ∩ (B ∪ C) ≡ (A ∩ B) ∪ (A ∩ C) 
o Take arbitrary x ∈ A ∩ (B ∪ C) 

o ∴ x ∈ A & x ∈ B ∪ C 

o Case 1 – x ∈ B x ∈ A ∩ B 

o Case 2 – x ∈ C  x ∈ A ∩ C 

o Both cases result in the RHS of the theorem ∎ 

 Show (A ∩ B) ∪ (A ∩ C) ≡ A ∩ (B ∪ C) 
o Take arbitrary x ∈ (A ∩ B) ∪ (A ∩ C) 

o Case 1 – x ∈ A ∩ B x ∈ B → x ∈ B ∪ C 

o Case 2 – x ∈ A ∩ C x ∈ C → x ∈ B ∪ C 

o Given that x ∈ A, both cases result in the LHS of the theorem ∎ 

List 
 Jump to logic laws 

 U = universe 

 Identity Laws A ∩ U = A, A ∪ U = U 

 Idempotent Laws A ∩ A = A, A ∪ A = A 

 Complement Laws A ∩ ¬A = 𝟘, A ∪ ¬A = U  

 Domination Laws A ∩ 𝟘 = 𝟘, A ∪ 𝟘 = A 

 Commutative Laws A ∩ B = B ∩ A, A ∪ B = B ∪ A 

 Associative Laws A ∩ (B ∩ C) = (A ∩ B) ∩ C, A ∪ (B ∪ C) = (A ∪ B) ∪ C 

 De Morgan’s Laws ¬(A ∩ B) = ¬A ∪ ¬B, ¬(A ∪ B) = ¬A ∩ ¬B 

 Double Complement Law ¬¬A = A 

 Absorption Laws A ∩ (A ∪ B) = A, A ∪ (A ∩ B) = A 

 Distributive Laws A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C), A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) 

Predicate Logic 
 Predicates are like T/F valued functions, with a variable as an input 

 Predicates make a statement about every possible variable; is a conjunction of infinitely 

many statements 

 Theorem: for every integer n ≥ 1, sum 1 + 3 + 5 + … + (2n + 1) is a perfect square 
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Lecture 7 – 2016/09/21 
 Rules of logic example 

o ¬Q ∧ ¬(P ⇒ Q) note that A ⇒ B ≡ ¬A ∨ B 

o ≡ ¬Q ∧ ¬(¬P ∨ Q) 

o ≡ ¬Q ∧ (O ∧ ¬Q) 

o ≡ P ∧ ¬Q 

Predicate Logic (cont) 
 Recall previous lecture 

 ∀ is the universal quantifier (“for all”) 

 Example 
o C(x); x is cardinal, R(x): x is red 

 “All cardinals are red” → ∀x(C(x) ⇒ R(x)) 

o N(x): x is number 

 ∀x∀y[N(x) ∧ N(y) ∧ y ≠ 0 ⇒ N(x ÷ y)] → “if x & y are numbers & y ≠ 0, then 

x ÷ y is number” 

o “If it rains, every person will get wet” 

 R: it rains, P(x): x is a person, W(x): x will get wet 

 R ⇒ ∀x(P(x) ⇒ W(x)) 

o “Not everything is about you” 

 Y(x): x is about you 

 ¬∀xY(x) 

 You can name things in universe, usually w/ lower case letters, and use them as constants  

o b: barkeeper, B(x); x is busy → B(b) → “the barkeeper is busy” 

 Predicates can take more than one argument → called relations 
o I(x, y): x asks y for ID, W(x): x is person who wants wine, b: barkeeper 

 ∀y(W(y) ⇒ I(b, y)) → “if person wants wine, barkeeper will ID that person” 

 ∃ is the existential quantifier (“there exists”) 

o E(x): x is even number, P(x): x is prime number 

 “There exists an even number which is also prime” → ∃x(E(x) ∧ P(x))  

o F(x, y): x & y are friends, b: barkeeper 

 “The barkeeper has a friend” → ∃yF(b, y) 

 Predicate logic can have functions – can take anything in universe as arguments  
– take values in universe – can take more than one argument 

o F(x): father of x, b: barkeeper 

 F(b) → “father of barkeeper” 

o P(x, y): x + y 

 Negation 

o “Every even number > 2 can be written as sum of 2 prime numbers” 

 E(x): x is even number, P(x): x is prime number, x > y: x greater than y, 

x + y: x + y, 2: 2 
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Lecture 8 – 2016/09/23 
Negations in Predicate Logic (cont) 

 To say that ∀xP(x) is false, prove that P(x) is false for at least one x, where x ∈ ∀ 
o ¬∀xP(x) is an existential statement ¬∀xS(x) ≡ ∃x¬S(x) 

 “All cardinals are red” 
o C(x): x is cardinal, R(x): x is red 

o ∀x(C(x) ⇒ R(x)) 

o Negation – “there is a cardinal who is not red” 

 ∃x¬(C(x) ⇒ R(x)) 

 ∃x¬(C(x) ∧ ¬R(x)) 

Negations of existential statements 
 ¬∃xS(x) ≡ ∀x¬S(x) 

 “Charles has a smartphone” 
o C(x); x belongs to Charles, S(x): x is a smartphone 

o ∃x(C(x) ∧ S(x)) 

o Negation – “Charles does not have a smartphone”  

 There is no x where x ∈ ∀ that fits C(x) ∧ S(x) 

 ∀x¬(C(x) ∧ S(x)) ∀x(S(x) ⇒ ¬C(x)) 

 “Everyone has a friend” 

o F(x, y): x and y are friends, U = {all people} 

o ∀x∃yF(x, y) 

o Negation – “there exists someone with no friends” 

 ¬∀x∃yF(x, y) ≡ ∃x¬∃yF(x, y) ≡ ∃x∀y¬F(x, y) 

 

 Order of quantification matters ∀x∃yS(x, y) ≢ ∃y∀xS(x, y) 
o Ie “Everyone has a friend” ≢ “There is someone who is friends with everyone” 

 Vacuously true statements 
o Consider ∀x(P(x) ⇒ Q(x)), where P(x) is false for all x ∈ U 

 ∵ implications w/ false hypotheses are true 

 ∴ ∀x(P(x) ⇒ Q(x)) is vacuously true 
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Lecture 9 – 2016/09/26 
Axiomatic system 

 Set of basic axioms (assumptions) which can be combined using logic to deduce theorems 

 Euclidean high school geometry may be the first example of an axiomatic system 

o 300 BC – 5 axioms 

o A1 – there are at least two points 

o A2 – for any two distinct points, there is exactly one line passing through them 

o A3 – for each line L, there is a point not on L 

o A4 – if L is a line & x is a point not on L, then there is exactly one line through x 

parallel to L 

 Lines L and L’ are parallel if they never intersect 

 Proofs with axioms 

o Theorem – every point is on at least two lines 

 Take any point x 

 By A1, there is another point y ≠ x 

 By A2, there is a line L through x and y 

 By A3, there is a point z ∉ L 

 By A2, there Is a line L’ through x and z 

 ∵ z ∈ L’ ∩ z ∉ L 

 ∴ L ≠ L’ x is on (at least) two distinct lines 

o Theorem – every line has at least two points 

 Take any line L 

 By A3, there is a point x ∉ L 

 By previous theorem, x lies on two distinct lines L1 & L2 

 By A4, at most one of L1 & L2 can be parallel to L (Let’s say L2 ∦ L) 

 By definition of parallel, there is a point y that intersects both L & L2 

 By A3, there is a point z not on L2 

 If z ∈ L, proof is done 

 If z ∉ L, by A4, there is a line L’ through z & ∥ L2 

 L’ ∦ L, as otherwise there would be two lines passing through y & ∦ L’ 
 By definition of parallel, there is a point w that intersects both L’ & L 

 ∵ L’ ∥ L2 ∩ w ∈ L’ ∩ y ∈ L2 

 ∴ w ≠ y two distinct points on L 

 Russell’s paradox 
o Define set R to be set of all sets which do not belong to themselves 

o R = {x: x ∉ x} 

o Then R ∈ R ⇔ R ∉ R  

o To avoid this, Zermelo–Fraenkel defined collection of natural axioms for set theory 

  



Allan Wang 

15 

 

Lecture 10 – 2016/09/28 
Motivation for axiomatic systems 

 Make proof-checking automatic (ie doable by computer) 

 Automatic theorem proving 

 Block paradoxes by limiting expressive power (ie Russell’s paradox) 

First order theories 
 Essentially all of mathematics is based on Zermelo–Fraenkel axioms for set theorem. 

o Chose to formulate axiomatic system in predicate (first-order) logic 

o Has signature of ∈ (binary relation) and ∅ (empty constant) 

 Usually comes with signature – list of allowed predicates, relations, constants, and functions 

 Language – set of all sentences of predicates one can make from the signature 

 Language of set theory example 
o ∀x∃y∀u(u ∈ y ⇔ ∃z(z ∈ x ∧ u ∈ z)) axiom of union 

 Theory – set of all sentences derivable from given set of axioms 

 Predicate logic comes with system of rules for formal deduction, allowing for automatically 
checkable proofs 

 Abbreviation scheme – gives meaning to signature; not necessary in creating language, but 
helps other readers 

 Example of formalized theory of geometry 
o Signature – P(x), L(x), I(x, y) 

o Abbreviation scheme – P(x): x is a point, L(x): x is a line, I(x, y): P(x) is on L(y) 

o Lines l & l’ intersect ∃x(P(x) ∧ I(x, l) ∧ I(x, l’)) 

Applications of Logic 
 AI (ie automatic theorem proving) 

 Software verification 

 Programming language theory (ie compiler design, translation) 

  Puzzles 

 Law 

 Math (ie Russell’s paradox) 

Other Logics 
 Second-order (and higher-order) logic – allows for quantification over predicates 

 Modal logic (ie symbols for necessarily P, possibly P) 

 Fuzzy logic – truth not 0/1, but rather values in interval [0, 1] 

 Temporal logic – “I will be hungry until I eat” 
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Lecture 11 – 2016/09/30 
Mathematical Induction 

 Strategy: proving P(n) for all n ≥ 1 ≡ proving P(1) & proving P(n) ⇒ P(n+1) for all n ≥ 1 
o As a result, P(n – 1) ⇒ P(n), P(n – 2) ⇒ P(n – 1) … P(1) ⇒ P(2), P(1) ≡ T; all are true 

 Theorem: for any n ≥ 1, sum of first n odd numbers is equal to n2 
o P(1) = 1 = 12 

o Induction ∀n(P(n) ⇒ P(n + 1)) 

 We can assume that the theorem is true for n (induction hypothesis) 

1 + 3 + 5 + … + (2n – 1) = n2 

 We need to show that 

1 + 3 + 5 + … + (2n – 1) + (2n + 1) = (n + 1)2 

 ↳ n2 + (2n + 1) = (n + 1)2 ∎ 

 Prove that sum of first n positive integers is n(n + 1)/2 
o Base case 1 = 1 * 2/2 

o Induction 

 Assume 1 + 2 + 3 + … + n = n(n + 1)/2 

 Prove 1 + 2 + 3 + … + n + (n + 1) = (n + 1)(n + 2)/2 

↳ n(n + 1)/2 + (n + 1) = 
𝑛(𝑛+1)+2(𝑛+1)

2
 = (n +1)(n + 2)/2 ∎ 

 Prove n(n + 1) is odd 
o Induction 

 Assume n(n + 1) is odd 

 Prove (n + 1)(n + 2) is odd 

↳ (n + 1)(n + 2) = n(n + 1) + 2(n + 1) = odd + even = odd 

o Proof is wrong, as we didn’t do the base case; base case is false for all cases 

 Theorem: all horses are the same colour 

o Prove that for each n, every set of n horses has the property that all the horses in it 

have the same colour 

o Base case (n = 1) – true; only one horse 

o Induction 

 Assume that if |H| = n, all horses ∈ H have same colour 

 Take set H2 where |H2| = n + 1 

↳ H2 = H + h, where h is a set of one horse 

↳ Due to base case & assumption, all have same colour 

o Proof is wrong; problem with base case as P(1) ⇏ P(2) 
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Lecture 12 – 2016/10/03 
Mathematical Induction (cont) 

 Strong induction  P(1) ∧ P(2) ∧ P(3) ∧ …  ∧ P(n) ⇒ P(n + 1) 
o You can assume any of the P(a) is true when proving; where a is a constant < n 

 Prove: every nonnegative integer n can be written as ak2k + ak-12k-1+ … + a222 + a12 + a0 

With ai ∈ {0, 1}   (prove any whole number can be written in binary) 

o Base case n = 0 binary is 0 

o Induction step – suppose n is odd; by induction hypothesis, we can write n – 1 as 

n – 1 = ak2k + ak-12k-1+ … + a222 + a12 + a0   with ai ∈ {0, 1} for all i  

 ∵ n – 1 is even  ∴ a0 = 0 

 n can be written the same as n – 1, but with a0 = 1 

o Induction step – suppose n is even; by induction hypothesis, we can write n/2 as 

n/2 = ak2k + ak-12k-1+ … + a222 + a12 + a0   with ai ∈ {0, 1} for all i 

 n = 2(ak2k + ak-12k-1+ … + a12 + a0) = ak2k+1 + ak-12k+ … + a122 + a02 ∎ 

 Pythagorean theorem – if triangle is a right angled triangle, then z2 = x2 + y2 

 Fermat’s Last theorem – if a, b, c are positive integers & an + bn = cn, then n ≤ 2 

 Direct proof, contrapositive proof, proof by contradiction 

 Thm = theorem pf = proof 

Direct Proof 
 To prove P ⇒ Q, assume P, deduce Q 

 Thm: if x, y ∈ ℝ, then 2xy ≤ x2 + y2 

o Pf: assume x, y ∈ ℝ ∵ 0 ≤ (x – y)2 = x2 – 2xy + y2  ∴ 2xy ≤ x2 + y2 ∎ 

 Thm: if a ∈ ℤ is odd, then a2 is odd 

o Pf: if a ∈ ℤ is odd, a = 2b + 1 for some b ∈ ℤ 

 ∵ a2 = (2b + 1)2 = 4b2 + 4b + 1 = 2(2b2 + 2b) + 1 

 ∴ a2 is odd    even      odd 

Contrapositive Proof 
 To prove P ⇒ Q, prove ¬Q ⇒ ¬P assume ¬Q, deduce ¬P 

 Thm: (Pigeonhole principle) if we drop ≥ (n + 1) balls into n boxes, then some box gets at 
least 2 balls 

o Pf: Assume ¬Q, every box gets < 2 balls 
 Let xi = # of balls in boxi ∵ xi ∈ {0, 1} ∴ ∑ 𝑥𝑖

𝑛
𝑖=1  ≤ n 

 ∵ ∑ 𝑥𝑖
𝑛
𝑖=1  < n + 1 ∴ ¬P ∎ 

 Thm: let x, y ∈ ℝ & x, y ≥ 0; if xy > 100, then x > 10 or y > 10 

o Pf: Assume ¬Q, x ≤ 10 and y ≤ 10, xy ≤ 100 → ¬P ∎ 
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Lecture 13 – 2016/10/05 
Proof by Contradiction 

 Aka indirect proofs, reductio ad absurdum 

 To prove P, assume ¬P, derive contradiction 

 Thm: √2 is irrational 

o Pf: Assume not – √2 is rational, ∴ √2 = p/q p, q ∈ ℤ 

 Assume p/q is in lowest terms; no common factors 

o 2 = p2/q2   square both sides 

o 2q2 = p2   p2 is even → p is even 

o p = 2r    for some r ∈ ℤ 

o 2q2 = 4r2 → q2 = 2r2  q2 is even → q is even 

o p & q are therefore not in lowest terms; contradiction ∎ 

Proof by Cases 
 Sometimes P ⇒ Q breaks up into cases: (P1 ∨ P2 ∨ P3 ∨ … ∨ Pk) ⇒ Q 

o Suffice to prove (P1 ⇒ Q) ∧ (P2 ⇒ Q) ∧ (P3 ⇒ Q) ∧ … ∧ (Pk ⇒ Q) 

o Binary example from last lecture 

 Thm: if n ∈ ℤ is not divisible by 3, then n2 + 2 is divisible by 3 
o Pf: if 3 does not divide n, then n = 3m + 1 or n = 3m + 2, for some m ∈ ℤ 

o Case 1 – n = 3m + 1 

 n2 + 2 = (3m + 1)2 + 2 = 9m2 + 6m + 1 + 2 = 3(3m2 + 2m + 1) 

o Case 2 – n = 3m + 2 

 n2 + 2 = (3m + 2)2 + 2 = 9m2 + 12m + 4 + 2 = 3(3m2 + 4m + 2) 

o All cases are divisible by 3 ∎ 

Divisors 
 Let a, b ∈ ℤ if b is multiple of a (b = ax for some x ∈ ℤ), then we say “a divides b”: a|b 

 If a ∤ b, then there exists an r ∈ ℤ, where 1 ≤ r < a such that b = ax + r 
o We say r is the remainder 

 If d|a and d|b, then d is a common divisor of a and b 

Euclid’s Algorithm 
 Possibly the oldest known algorithm – used to find greatest common divisor (GCD) 

 Thm: if b = ax + r  (a, b, x, r ∈ ℤ) (0 ≤ r < a) then gcd(b, a) = gcd(a, r) 

 Pf: b = ax + r 
o Show that every divisor of a and r is also a divisor of a and b – gcd(a, r) ≤ gcd(a, b) 

 Suppose d|a & d|r → a = md & r = nd    m, n ∈ ℤ  

 b = ax + r = mdx + nd = d(mx + n)    ∴ d|b 

o Show that every divisor of a and b is also a divisor of a and r – gcd(a, r) ≥ gcd(a, b) 

 Suppose d|a * d|b → b = md & a = nd    m, n ∈ ℤ 

 b = ax + r → b – ax = r → md – ndx = r → r = d(m – nx) ∴ d|r ∎ 
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Lecture 14 – 2016/10/07 
Euclid’s Algorithm (cont) 

 Given number a & b, switch a for b is b < a (a should be the smaller number) 

 If a > 0, divide b by a for r. Replace b by r and loop again 

 If a = 0, return b as gcd 

 Example: gcd(300, 18) 
o a = 18, b = 300 b/a = 16r12   → a = 18, b = 12 

o a = 12, b = 18  b/a = 1r6   → a = 12, b = 6 

o a = 6, b = 12  b/a = 2r0  → a = 6, b = 0 

o a = 0, b = 6  return gcd 6 

 Question: which numbers can be written as ma + nb with a, b, m, n ∈ ℤ 
o If x = ma + nb & d = gcd(a, b), then d|x 

 If a = a’d & b = b’d, x = ma + nb = ma’d + nb’d = d(ma’ + mb’) 

 ∴ divisibility by gcd(a, b) is a necessary condition 

o gcd(a, b) is also a sufficient condition 

 Euclid’s algorithm shows how to write gcd(a, b) as ma + nb 

 Example: find gcd(62, 28) & express as 62m + 28n with m, n ∈ ℤ 

o gcd(62, 28) → (a, b) → (28, 62) → (6, 28) → (4, 6) → (4, 2) → (0, 2) → gcd is 2 

o Do Euclid’s algorithm backwards, write r in terms of a and b 

 62 – 2 * 28 = 6, 28 – 4 * 6 = 4, 6 – 4 = 2 

 gcd = 2 = 6 – 4 = 6 – (28 – 4 * 6) = 5 * 6 – 28 = 5(62 – 2 * 28) – 28  

= 5 * 62 – 11 * 28  →  m = 5, n = -11 

o Note: since gcd = 2, any even number can be written as 62m + 28n with m, n ∈ ℤ 

 If gcd(a, b) = 1, a & b are “relatively prime” or “coprime” 

o If a & b are relatively prime, any integer can be written as ma + nb for m, n ∈ ℤ 

Congruences 
 If a & b give same remainder when divided by m, we say that a & b are congruent modulo m 

o Notation a ≡ b (mod m) 

 If a ≡ 0 (mod b), then a is divisible by b 

 Thm: a ≡ b (mod m) ⇔ a – b ≡ 0 (mod m) 
o Pf ⇒ : if a = mp + r, b = mq + r, then a – b = m(p – q), m|(a – b) 

o Pf ⇐ : assume a – b ≡ 0 (mod m) 

 If a = mp + r, b = mq + r’ with 0 ≤ r, r’ < m, then a – b = m(p – q) + r – r’ 

 ∵ m|(a – b) ∴ m|(a – b) – m(p – q), m|(r – r’) 

 ∵ 0 ≤ r, r’ < m, we have -m< r – r’ < m, so r – r’ = 0 ∎ 

 Thm: If a ≡ b (mod m) and c ≡ d (mod m), then ac ≡ bd (mod m) 
o Pf: ac – bd = (a – b)c + b(c – d) 

o ∵ a ≡ b (mod m) ∴ a – b ≡ 0 (mod m) 

o ∵ c ≡ d (mod m) ∴ c – d ≡ 0 (mod m) 

o ∴ m|ac – bd, ac ≡ bd (mod m) ∎ 
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Lecture 15 – 2016/10/12 
Modular Arithmetic 

 Can be thought of as “arithmetic on the clock” 

 Ie It’s now 11 o’clock in the morning; what time of the day will it be in 89 hours? 

o 11 + 89 ≡ 4 (mod 24) → it would be 4am 

 Ie Today is Wednesday; what day of the week will it be in 104 days 

o Assume Monday = 0 → Wednesday = 2 

o 2 + 104 ≡ 1 (mod 7) → it would be Tuesday 

 Can show that equations have no solutions in integers 

 Ie Show that x2 + y2 = 211 has no solutions for x, y ∈ ℤ 

o Observe that 02 ≡ 0 (mod 4), 12 ≡ 1 (mod 4), 22 ≡ 0 (mod 4), & 32 ≡ 1 (mod 4) 
o ∵ x2 ≡ 0 or 1 (mod 4), y2 ≡ 0 or 1 (mod 4) ∴ x2 + y2 ≡ 0, 1, or 2 (mod 4) 

o ∵ 211 ≡ 3 (mod 4)    ∴ the equation has no solution 

Justification for Arithmetic Mod M 
 We know 2 ≡ 7 (mod 5) 

 Thm: if a ≡ b (mod m) & c ≡ d (mod m), then ac ≡ bd (mod m) 

o Proved last class; justifies multiplication of congruences 

 Thm: if a≡ b(mod m) & c ≡ d (mod m), then a + c ≡ b + d (mod m) 

o Pf: (a + c) – (b + d) = (a – b) + (c – d) → both divisible by m → 0 (mod m) 

Fermat’s Little Theorem 
 Thm: if p is any prime and a is any integer, then ap ≡ a (mod p) 

 Useful for computing large powers modulo p 

 Ie Find 47625367 (mod 13) 
o Note 4762 ≡ 4 (mod 13)  → 47625367 ≡ 45367 (mod 130) 

o 5367 = 13 * 412 + 11, using FLT, 45367 ≡ (413)412 * 411 (mod 13) 

o ≡ (4412)(411) (mod 13) ≡ 4423 (mod 13) 

o 423 = 13 * 32 + 7 → (413 * 32 + 7) (mod 13) ≡ 439 (mod 13) ≡ 43 (mod 13)  

o ≡ 12 (mod 13)         (FLT)    (FLT) 

 Ie Find 239674 (mod 523) 
o Note 523 is prime 

o 39674 = 523 * 75 + 449 → ≡ 275 + 449 (mod 523) ≡ 2524 (mod 523) 

o 524 = 523 + 1   → ≡ 21 + 1 (mod 523) ≡ 4 (mod 523) 

Fundamental Theorem of Arithmetic 
 Thm: every positive integer can be written as product of primes, and factorization is unique 

up to the order of the prime factors 

 Ie What is the prime factorization of 511? 511 = 7 * 73 

 Ie 8085?     8085 = 3 * 5 * 72 * 11 

 How many primes are there?   Infinitely many 

o Pf: say we have a finite number of primes; multiplying all of them and adding one 

would yield in a new prime (it would have remainder 1 when divided by any prime) 

Contradiction to Fundamental Theorem of Arithmetic ∎ 
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Lecture 16 – 2016/10/14 
 Applications of number theory – primality testing, cryptography, random number 

generation 

Cryptography Examples 
 Substitution cipher – all items get switched with another item (ie a → n, b → c, c → b …) 

o Can be defeated with frequency analysis – matching frequency of common 

encrypted letters with frequency of actual English letters 

 Most common letters are e, t, a, o, i, … 

o Must use same encrypting permutation for decryption 

 Public key cryptography – encryption key is sent to those who need it, but only receiver has 
decryption key 

RSA encryption  
 Named after Rivest, Shamir, Adleman 

 Receiver generates two prime numbers, p, q, and sets m = pq (More info later) 

 Receiver finds two numbers e, d such that (p – 1)(q – 1)|(ed – 1) 
o Use Euclidean algorithm to find random e which is relatively prime to (p – 1)(q – 1) 

o Find u, v such that u(p – 1)(q – 1) + ve = 1 

o Let d = v → de – 1 = –u(p – 1)(q – 1) so (p – 1)(q – 1)|(ed – 1) 

 Receiver publishes m & e; keeps d private 

 A “message” in this context is simply a number x, where 0 ≤ x < m 

o So p and q should be sufficiently large 

o Larger messages can be split up into smaller blocks and sent piece by piece 

 Sender computes xe (mod m) & sends it 
o More on how to compute xe later 

 Receiver gets r ≡ xe (mod m) and computes rd (mod m) 
o rd ≡ x (mod m) 

Explanation 

 Need to show rd ≡ xed ≡ x (mod m) or m|xed – x 

 Fact – for all integers a > 2 & n ≥ 1, a – 1|an – 1 

 Enough to show that p|xed – x & q|xed – x  [Fundamental theorem of arithmetic] 
o xed-1 – 1 = xl(p-1) – 1 for some l   Note that p – 1|ed – 1 

o xp-1 – 1|xl(p-1) – 1    Due to fact above 

o xp – x|x(xl(p-1) – 1)    Multiply both sides by x 

o p|x(xl(p-1) – 1)     Fermat’s Little Theorem: p|xp – x 

o p|xed – x     x(xl(p-1) – 1) = xed – x 

o Same similarity for q → m|xed – x → xed ≡ x (mod m) 

Dynamic Programming Algorithm for 2n 

 If n is even, take 2n/2 and square it 

 If n is odd, take 2n-1 and double it 

 If n has k binary bits, 2n can be found with ≤ 2k multiplications 

 Note that all exponentiation is mod m  
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Lecture 17 – 2016/10/17 
 RSA security relies on complexity – if you can factor integers quickly, you can crack RSA 

Primality Testing 
 Idea #1: For a < n, check a|n (really slow) 

 Idea #2: Fermat’s Little Theorem – using contrapositive, if an-1 ≢ 1(mod n), n is composite 

o Ie 9: 9 ∤ 28 – 1 = 255 

o If it fails the test, it is composite, but if it passes, it isn’t necessarily prime 

 Ie 341 | 2240 – 1, but 341 = 11 * 31 

 Thm: Positive integer n > 1 is prime if and only if it passes the Fermat test for every base a 
= 1, 2, 3, …, n – 1 (slow as well) 

Miller-Rabin Test 
 Recall that a2n – b2m = (an – bm)(an + bm) 

 a560 – 1 = (a280 – 1) (a280 + 1) (a560 + 1) = (a140 – 1) (a140 + 1) (a280 + 1) (a560 + 1) = … 

 If 561 were prime, it would divide a560 – 1 (FLT), so it would divide one of the factors  

 Test: for odd integer n > 1, pick integer a at random with 0 < a ≤ n – 1; factor an-1 – 1 
o Factor using a2n – b2m = (an – bm)(an + bm) 

o For each factor, check divisibility by n 

o If n does not divide; it is composite 

o Unfortunately, there are still false positives, but better than idea #2 

 Thm: if n is composite, Millar-Rabin test fails with probability ≥ ¾ 
o To be more certain, do test many times 

 

 More deterministic method – AKS (Agrawal-Kangal-Saxena) 

o O(n) = (log(n))6 still too slow, Miller-Rabin faster in practice 

 

 

 Extra – how many squares are there among 11, 111, 1111, 11…1, … 
o Notice that 11 ≡ 3 (mod 4) and 3 is not a square mod 4 

o All numbers have the form 100m + 11 for some m ∈ ℤ 

o 100m + 11 ≡ 3 (mod 4) 

o Therefore, none of the numbers are squares 
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Lecture 18 – 2016/10/19 
Midterm 

 Two problems – logic & number theory – each with a few parts  

 Samples here 

 Mostly based on homework – make sure you can do all the hw exercises 

 If you have time, read Book of Proof – Hammack 
 

 Core, Very Important, Important 

Number Theory 
 Euclidian algorithm, GCD 

 Modular arithmetic, congruences 

 Fermat’s Little theorem 

 Induction 

 Proof strategy/proof structures 

 Primality testing  

 Cryptography (RSA) 
 Fundamental theorem of arithmetic 

(factorization into primes) 

 Exponentiation 

 Infinitude of primes 

Logic 
 Set theory/proving set identities 

 Translation/symbolization 

(predicate & propositional logic) 

 Negations, especially in predicate 

logic 

 Rules of logic 

 Axiomatic systems 
 Truth tables 

 Knights and knaves 
 Venn diagrams 
 Tautologies, contradictions, 

contingencies

 

 Uniqueness – ∃x[P(x) ∧ ∀y(P(y) ⇒ y = x)] 
 

 Let there be x, m ∈ ℤ – when does there exist y such that 
(*) xy ≡ 1 (mod m)? 

o ∵ (*) = xy – 1 = km for some k ∈ ℤ 

o ∴ (*) ⇔ ∃k ∈ ℤ (xy + km = 1) 

o So (*) has a solution if and only if x and m are relatively prime 

o In this case, we say x is invertible module m, and if y satisfies (*), it’s the inverse of x, 
usually denoted x-1 

o Ie is there a y such that 3y ≡ 1 (mod 6)? O, 3 & 6 are not relatively prime 

 

 

 

Lecture 19 is a review 
  

http://www.math.mcgill.ca/~edecorte/math240/#toc_10
http://www.people.vcu.edu/~rhammack/BookOfProof/
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Lecture 20 – 2016/10/26 
 f is surjective (onto) if every y ∈ Y is a value f(x) for some x ∈ X (every output has an input) 

 f is injective if it’s one-to-one (every output has at most one input) 

 f is bijective (1-1 and onto) if every y ∈ Y is a value f(x) for exactly one x ∈ X (every input 
has one output, and vice versa) 

 We can compose a function f:X → Y with a function g:Y → Z to get a function h:X → Z 
o h(x) = g(f(x)) = g ∘ f(x) 

 f: X → Y is invertible if it has an inverse function g: Y → X such that g ∘ f(x) = x for all x ∈ X 
and f ∘ g(y) = y for all y ∈ Y. In this case, we denote g by f-1 

o Bijections are invertible 

 Recall |X| means cardinality (size) of X 

 Observe that f:X → Y ⇔ … 

o |X| ≥ |Y| for surjections 

o |X| ≤ |Y| for injections 

o |X| = |Y| for bijections 

o Useful for combinatorics 

 Ie: Given an alphabet with k letters, say [k] (all integers i → k), how many sequences of 

length n can you make 

o kn since we have k choices for each of the n letters 

o Note that we have just counted the number of functions f[n] → [k] 

 Subsets: take an n-set X; how many subsets does it have? 

o 2n since for each element, it can either be in or out of the subset 

 Permutations: A permutation of a set x is a bijection from f:X → X (itself) 

o How many permutations are there of an n-set? 

 Without loss of generality, X = {1, 2, 3, …, n} 

 We have n choices for f(1), n – 1 choices for f(2), etc 

 n(n – 1)(n – 2)…(3)(2)(1) = n! 

 How many subsets of k does an n-set have? 

o (𝑛
𝑘

) = n!/(k!(n – k)!) = “n choose k” 

o For every set of size m, there are n + 1 – m choices → (n)(n – 1)….(n – k + 1) = 

n!/(n – k)! for sets sized 1 to k. As every set k can be ordered k! ways and order does 

not matter for subsets, we must divide the answer by k!. 
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Lecture 21 – 2016/10/28 
Binomial Theorem 

 Let n ≥ 0 be an integer, and consider the polynomial (x + y)n 

 (x + y) = x + y    (x + y)2 = x2 + 2xy + y2 

 In general, (x + y)n is the sum of terms of degree n, ie they all have the form xkyn-k for some 

k, 0 ≤ k ≤ n; every xkyn-k also has a coefficient equal to the number of ways to pick k objects 

from a set of n objects: (𝑛
𝑘

)  the numbers (𝑛
𝑘

) are called the binomial coefficients 

 (x + y)n = ∑ (𝑛
𝑘

)𝑥𝑘𝑦𝑛−𝑘𝑛
𝑘=0  

Special Cases 
 x = y = 1 

o (1 + 1)n = ∑ (𝑛
𝑘

)𝑛
𝑘=0  = (𝑛

0
) + (𝑛

1
) + (𝑛

2
) + … + (𝑛

𝑛
) 

o LHS: the #subsets of an n-set 

o RHS: the #k-subsets of an n-set summed over all k 

o So the last identity actually has two proofs: an algebraic one (via binomial theorem), 

and a combinatorial one 

 x = -1, y = 1 

o 0 = (-1 + 1)n = ∑ (𝑛
𝑘

)𝑛
𝑘=0 (−1)𝑘 = (𝑛

0
) – (𝑛

1
) + (𝑛

2
) – (𝑛

3
) + … 

o Combinatorically: “The number of odd subsets of an n-set is equal to the number of 

even subsets.” 

Pascal’s Triangle 
 The outside numbers are 1 and each other entry is the sum of the two above it 

 Thm: Entry k of row n is (𝑛
𝑘

) 

o Pf: By induction on n 

 Base case: n = 0, (0
0
) = 1 by definition 

 Induction: for k = 0 or k = n, (𝑛
𝑘

) = 1 

Assuming 0 < k < n, we want to show that (𝑛
𝑘

) = (𝑛−1
𝑘−1

) + (𝑛−1
𝑘

) 

 Combinatorial proof: 

o LHS: #k-subsets of an n-set 

o RHS: #k-subsets of {1, 2, 3, …, n} containing n plus #k-subsets 
of {1, 2, 3, …, n – 1} 

 Observation: Pascal’s triangle is symmetrical about the vertical line which goes through the 

apex → (𝑛
𝑘

) = ( 𝑛
𝑛−𝑘

) 

o Combinatorically: choosing a k-subset of an n-set 

is equivalent to choosing its 

(n-k)-element complement → ∑ (𝑛
𝑘

)
2𝑛

𝑘=0  = (2𝑛
𝑛

) 

 

  

1 

1     1 

1     2     1 

1     3     3     1 

1     4     6     4     1 

1     5     10   10     5     1 

1     6    15    20    15    6     1 
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Lecture 22 – 2016/10/31 
 (𝑛

0
)

2
 + (𝑛

1
)

2
 + (𝑛

2
)

2
 + … + (𝑛

𝑘
)

2
 = (𝑛

𝑘
)

2
  

o LHS = (𝑛
0

)(𝑛
𝑛

) + (𝑛
1

)( 𝑛
𝑛−1

) + (𝑛
2

)( 𝑛
𝑛−2

) + … + (𝑛
𝑛

)(𝑛
0

) 

o RHS = # ways to choose an n-set out form a 2n-set 

o LHS: to select an n-subset from {1, 2, 3, …, 2n}, we could select k elements from {1, 
…, n} and n – k elements from {n + 1, …, 2n} 

o This can be done in (𝑛
𝑘

)( 𝑛
𝑛−𝑘

) ways. Summing over all k gives the result. ∎ 

 Question: Suppose we’ve got n identical coins, and k children. How many ways can we 

distribute the n coins among the k children? In other words, how many nonnegative 

integers d1, …, dk are there with d1 + d2 + … + dk = n 

o Add k – 1 new coins to the set of n. Line up all n + k – 1 coins. 

o Select k – 1 coins to act as “walls”. Child 1 gets all the coins to the left of the first 

wall.  Child 2 gets the coins between the first and second wall, …, and the last child 

gets the coins to the right of the last wall. 

o How many ways can we pick k – 1 walls from n + k – 1 coins? (𝑛+𝑘−1
𝑘−1

) 

Pigeonhole Principle 
 Fact. There are two people in Montreal who have the exact same number of hairs on their 

head. 

o Reason: No one has more than 0.5 million hairs on their head. (Scientific fact) 

For each i = 0 1, 2, …, 500 000, create a group Gi, where each Gi contains all the 

Montrealers having exactly i hairs. Since there are 500 001 groups and > 500 001 

Montrealers, one of the groups must have at least two people. 

 Principle: If we have n boxes and more than n objects, and we place all the objects into the 
boxes, then some box must contain ≥ 2 objects. 

 Ie: Suppose S ⊂ {1, 2, …, 2n} consists of n + 1 elements. Show that S contains two numbers 

summing to 2n + 1 

o Our boxes will be labelled with pairs of numbers summing to 2n + 1: 

 {1, 2n}, {2, 2n – 1}, {3, 2n – 2}, … , {n, n+1} 

o There are n boxes, and each element of S goes into the box showing the 

corresponding label. One of the boxes must get two numbers; these two numbers 

will sum to 2n + 1. 

 Ie: Consider a set X of 90 integers, each with 25 digits. There must be two subsets of X 
having the same sum. 

o Reason: The sum of all elements in any subset is ≤ 90 * 1025 ≤ 1027 

 Also an upper bound on the number of possible sums 

 The number of subsets is 290, which is > 1027 

 Pigeonhole principle implies there must be two subsets having the same 

sum 
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Lecture 23 – 2016/11/02 
Pigeonhole Principle Continued 

 Ie: If 16 people sit down in a row of 18 chairs, then there is a sequence of 6 consecutive 
chairs all being used 

o Block 1 {1, …, 6} 

o Block 2 {7, …, 12} 

o Block 3 {13, …, 18} 

o To avoid getting 6 occupied chairs in a row, then none of the blocks can be full. 

o Each block would have at most 5 people, meaning that there are at most 15 people 

in total. 

 Take a set X of 5 points on the infinite 2D grid 

o There exists two points x, y ∈ X such that the midpoint ((x + y)/2) of the connecting 

line segment is also a grid point 

o Let S = set of even integers, T = set of odd integers 

o We’ll have four boxes: odd x odd, odd x even, even x odd, even x even 

o Since |x| = 5, two points x, y ∈ X must be in the same box 

o Then x + y ∈ even x even, so each coordinate of x + y is divisible by 2, which means 

(x + y)/2 is a grid points 

Counting Techniques 
 How many “words” can you make by arranging the letters in MATHEMATICS? 

 Had the question been for MATH, the answer would be 4! (permutation for distinct items) 

 MATHEMATICS has 11 letters, but there are duplicates. → For every letter with k 
occurrences, divide 11! by k!. M, A, T all occur twice → Answer is 11!/(2! * 2! * 2!)  = 11!/8 

Cyclic Orderings 
 How many ways can we arrange the numbers around a circle? 

 Each permutation gives n circular orderings  
→ # circular orderings = # permutations/n = (n – 1)!  
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Lecture 24 – 2016/11/04 
Principle of Inclusion-Exclusion 

 Suppose we’ve got a bunch of students. 18 are enrolled in math 240, 16 in phys 131, and 12 
in comp 250. How many students are there in total? → not enough info 

o A1 = {students in math 240}, A2 = {in phys 131}, A3 = {in comp 250} 

o Let’s say we know: |A1 ∩ A2| = 7, |A1 ∩ A3| = 5, |A2 ∩ A3| = 3, |A1 ∩ A2 ∩ A3| = 2 

o |A1 ∪ A2 ∪ A3| = |A1| + |A2| + |A3| – |A1 ∩ A2| – |A2 ∩ A3| – |A2 ∩ A3| + |A1 ∩ A2 ∩ A3| 

Intersecting Set Systems 
 Suppose that F is a family of subsets of [n] = {1, 2, …, n}, having the property that x ∩ y ≠ ∅ 

for all x, y ∈ F. Such an F is called an intersecting family 

 How big can an intersecting family be? 

o Let’s take F to be the collective of all subsets containing some fixed element, say 1. 

Then |F| = 2n-1 

o It’s the best you can do, because if x ∈ F, [n] \ x ∉ F 

o So |F| ≤ 2n-1 

 What if we insist that all subsets in F have the same size k? 

o Assume 2k ≤ n: (𝑛−1
𝑘−1

), all k subsets containing same fixed element 

 Theorem: (Erdõs-Ko-Rado, 1961) – if F is an intersecting family of k-subsets of [n] = {1, 2, 

…, n}, and n ≥ 2k, then |F| ≤ (𝑛−1
𝑘−1

) 

o Lemma Let σ:[n] → [n] be a permutation 

 For 0 ≤ s ≤ n – 1, set As = {σ(s), σ(s + 1), …, σ(s + k – 1)} 

Where addition within σ is modulo n 

 Then an intersecting family F in [n] can contain at most k of the sets As 

 Suppose we have As ∈ F. There are 2(k – 1) other sets At intersecting As, 

namely As-i and As+i for s = 1, 2, …, k – 1 

 But if I pick As-i to be in F, I cannot pick As+k-i. 

 So F can contain ≤ k – 1 other sets At ∎ 

o Ri of 2kRi 

 Let F be an intersecting family. Consider pairs of the form (σ, t) 

 There are n!xn such pairs 

 We map each such pair to the k-subset of [n] as follows 

 S(σ, t)≔{σ(t + 1), σ(t + 2), …, σ(t + k)} (arithmetic again is modulo n) 

 Given a permutation σ, there can be at most k values of t ∈ {0, 1, …, n – 1} for 

which S(σ, t) ∈ F, by the lemma 

 So |{(σ, t) : S(σ, t) ∈ F}| ≤ kn! 

o How many pairs get mapped to each k-subset? 

 Answer does not depend on the subset, so n!xn/(𝑛
𝑘

) 

 Therefore, |{(σ, t) : S(σ, t) ∈ F}| = |F|n!xn/(𝑛
𝑘

) ≤ kn! 

 |F| ≤ (𝑛
𝑘

)k/n = (𝑛−1
𝑘−1

) ∎ 
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Lecture 25 – 2016/11/07 
Erdõs-Ko-Rados 

 Q: Given integers n and k, n ≥ 2k, how large can we make a family F of K-subsets of [n] if we 
require x ∩ y ≠ ∅ for all x, y ∈ F? 

 We can get |F| = (𝑛−1
𝑘−1

) by taking all the k-subsets containing some fixed element 

 Theorem (Erdõs-Ko-Rados): (𝑛−1
𝑘−1

) is the best you can do 

 Lemma: For any way you place the numbers around the circle, the family F can contain no 

more than K of the arcs 

 Note: Choosing a way to get the numbers around the circle is the same as choosing a 
permutation; and choosing the arc of length k is equivalent to choosing a number from {0, 1, 

…, n – 1} 

 We estimate in two ways, the number of permutation-arc pairs, which produce a k-subset 
inside F 

 There are n! * n permutation-arc pairs in total 

 The number of pairs which produce any fixed k-subset is just 
n! ∗ n

(𝑛
𝑘)

 

 So the number of permutation-arc pairs producing a k-subset in F is 
n! ∗ n

(𝑛
𝑘)

 * |F| 

 But by the lemma, this number is ≤ n! * k 

 So 
n! ∗ n

(𝑛
𝑘)

 * |F| ≤ n! * k  →  |F| ≤ (𝑛
𝑘

)
k

n
 = (𝑛−1

𝑘−1
) 

Graphs 
 A graph is an ordered pair (ν, ϵ) consisting of a set of vertices V (or nodes), with some pairs 

of vertices being connected by edges. The elements of E are unordered pairs {u, v}, with u, v 

∈ V, u ≠ v. We have {u, v} ∈ E if and only if an edge joins u and v.  

 Graphs can model just about anything 

Examples  
 Networks 

o V = {people on Facebook}, Join two people with an edge when they are friends. 

o V = {nodes in network}, An edge between two nodes indicates a direct connection  

 Conflicts 
o V = {radio transmitting stations}, Connect two station with edge if they might 

interfere with each other 

o V = {k-subsets of [n]}, Join two k-subsets with edge if they are disjoint 

 Routing/logistics 

o V = {cities}, E = {roads} 

 

 If two vertices are joined with an edge, they are adjacent 

 When an edge e is attached to a vertex v, we say e is incident to v 

 The number of edges incident to a vertex v is its degree, usually denoted d(v) 
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Lecture 26 – 2016/11/09 
Handshaking Lemma 

 If there are n people at a meeting and everyone shakes hands with everyone exactly once, 
how many handshakes take place? 

 We can represent this situation with a graph; Answer: (𝑛
2

) 

 The graph drawn is called the compete graph on n vertices, denoted Kn 

Degrees 
 Recall: the degree of a vertex v is the number of edges incident to v. 

 Q: Can there be a graph with 5 vertices, having degrees 1, 2, 3, 4, 5? 

 Observation: by adding up all the vertex degrees, we count double the number of edges 
o Each endpoint is counted once 

 A: ∵ 1 + 2 + 3 + 4 + 5 = 15, which isn’t even ∴ degree sequence is impossible 

Walks & Paths 
 Let G = (ν, ϵ) be a graph.  

 A walk in G is a sequence of vertices v0, v1, v2, …, vk so that vi is adjacent to vi-1.  
o A closed walk is a walk in which v0 = vk (endpoints are the same) 

 A path is a walk in which no vertex gets repeated. 
o A closed path is a walk in which v0 = vk and no other vertex gets repeated. 

 A connected graph is a graph in which every u, v ∈ V has a path starting at u and ending at v. 

The first theorem of graph theory 
 Leonhard Euler 1736 

 Q: Is it possible to tour the city in a way that you cross 

each bridge exactly once? 

 A: During such a tour, each region of land would need to 

be entered and exited the same number of times. Therefore, each region would need an 

even number of bridges connected to it, which is not the case. 

 Let G = (ν, ϵ) be a graph. An Euler tour in G is a closed walk in which each edge gets used 
exactly once. Graphs with an Euler tour are Eulerian 

 Q: Which graphs are Eulerian? 

 Thm: (Euler 1736): A connected graph is Eulerian if and only if all the vertices have even 
degrees 

o Pf: We’ve already checked the necessity of having even degrees; let’s do sufficiency 

o Let W = v0, v1, v2, v3, …, vl be a longest possible walk in which no edge gets used 

more than once. 

o If there were an unused edge incident to vl, we could take it, so all edges incident to 

vl have been used. 

o At the end of the walk, we entered vl but never exited; since vl has even degree, vl 

must equal v0 (all other vertices have been entered and exited the same number of 

times) 

o Suppose G has an edge not used in W; since G is connected, there must be an unused 

edge incident to some vi. Then vi, vi+1, …, v0 = vl, v1, v2, …, vi is a longer walk 

→ contradiction ∎ 
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Lecture 27 – 2016/11/11 
Hamilton Cycles 

 Last time we found a simple characterization of Eulerian graphs, ie graphs which admit a 
closed walk which uses each edge exactly once. 

 What if instead we ask that each vertex gets used exactly once? 

 Cycle – a closed path of length ≥ 3 

 Hamilton cycle – a cycle which uses each vertex exactly once 

o A graph which admits a Hamilton cycle is Hamiltonian 

 A Hamilton path is a path which uses each vertex exactly once – like the cycle, but without 

the last edge connecting back to the start point 

 No simple characterization (necessary and sufficient condition) known, and evidence that 
none exists. (P vs NP) 

 Nevertheless, we have the following useful sufficient condition 

Thm: Dirac 1952 
 If G = (V, E) is a graph with ≥ 3 vertices and d(v) ≥ |V|/2 for each v ∈ V, then G is 

Hamiltonian 

 Pf: Contradiction: Let G = (V, E) be a non-Hamiltonian graph with d(v) ≥ |V|/2 for all v ∈ V 

 Add edges to G until addition of just one more edge would introduce a Hamilton cycle 

 Claim: G must contain a Hamilton path 
o If it is not a Hamilton path then its length is < |V| - 1, so we could add another edge 

without introducing a Hamilton cycle. 

 Say our Hamilton path is v1, v2, v3, …, vn (n = |V|) 

 We know v1 is adjacent to more than half of the vertices v3, v4, …, vn-1, and vn is adjacent to 

more than half of the vertices v2, v3, …, vn-2 

 By the pigeonhole principle, there is an index i such that v1 is adjacent to vi+1 and vn is 

adjacent to vi 

 v1, v2, …, vi, vn, vn-1, …, vi+1, v1 is a Hamilton cycle ∎ 
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Lecture 28 – 2016/11/14 
Subgraphs 

 Let G1 = (V1, E1) and G2 = (V2, E2). We say that G2 is a subgraph of G1 if V2 ⊆ V1 and E2 ⊆ E1. 

 If V2 ⊆ V1 and E2 consists of every edge in E1 that has both endpoints in V2, then we say G2 is 

an induced subgraph 

Graph Isomorphism 
 When are 2 graphs the same? 

 If we do not care about the names of the vertices, then G1 = (V1, E1) and G2 = (V2, E2) are 

“the same” if ∃ bijection f:V1 → V2 such that {i, j} ∈ E1 ⇔ {f(i), f(j)} ∈ E2  

 Note: isomorphisms always send vertices to vertices of the 

same degree 

 Bijections: f(a) = apple, f(b) = , f(c) = fish, f(d) = batman 

Trees 
 A tree is a connected graph with no cycles 

 Vertices of degree 1 are leaves; all other vertices are internal vertices 

 Fact: Every tree with ≥ vertices has ≥ 2 leaves 

o Pf: Take a largest possible path. The two endpoints must have degree 1, otherwise 

the path could be made longer 

o Note that no other edge on one of the endpoints can go back to the path 

 Fact: Every pair of vertices in a tree is connected with a unique path 
o Pf: Supposed P1 and P2 are two different paths from a to b with at least two points in 

common, namely the endpoints a and b (there may be more points in common) 

 Take two consecutive common points x and y, Walk from x to y along P1 and 

walk back to x along P2. This is a cycle, and trees don’t have cycles 

 Contradiction ∎ 

 Thm: Every tree on n ≥ 1 vertices has n – 1 edges 
o Pf: By induction on n 

 Base case: 1 vertex, 0 edges 

 Induction step: Let T be a tree with n + 1 vertices. Let v be a leaf (exists by 

an earlier fact). Let T’ = T – v. T’ is still connected and is still noncyclic 

∴ T’ is a tree on n vertices; by induction, it has n – 1 edges 

∴ T has n – 1 + 1 = n edges ∎ 

Spanning Tree 
 Every connected graph contains a tree as a subgraph which uses all the vertices 

→ such a graph is a spanning tree 

  

a b 

c d apple 

 

fish batman 
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Lecture 29 – 2016/11/16 
Spanning Trees (cont) 

 A spanning tree of a connected graph G is a tree T which is a subgraph of G and which has all 
the vertices of G 

 One way to see that every connected graph has a spanning tree is with a breadth-first 
search (a way to enumerate the vertices) 

 Start by inserting 1 into the queue (shown on right) 
o Remove next vertex v from queue and mark v as “visited” 

o Look at neighbours of v & discard the ones marked “visited”; mark remaining as 

“visited” and add them to the queue 

o Repeat 

 To get spanning tree 

o Do BFS. Each time you add a vertex to 

the queue, remember the edge connecting it to the last vertex removed. Discard all 

other edges 

Counting Trees 
 How many trees are there on a set of n vertices? 2 ways to interpret this question 

o We could ask for the number of isomorphism classes of trees (no simple formula) 

o We could ask for the number of labelled trees. In this case, isomorphic trees would 

be different. → but there is a nice answer: nn-2 (Cayley’s theorem) 

Tree Encoding (Prüfer Code) 
 Fix n = # of vertices. Consider a sequence of length n – 2 made with numbers from {0, 1, …, 

n – 1}, ie (n = 8) 2 4 0 3 3 1 

 Claim: we can turn every such sequence into a labelled tree with vertices from {0, …, n – 1} 

 Procedure 
o Add 0 to end of sequence 2 4 0 3 3 1 0 

o Construct row of numbers (L → R) above existing row  

Find smallest # in {0, 1, …, n – 1} not already listed in 5 2 4 6 7 3 1 

top row nor in the bottom row below or after it 2 4 0 3 3 1 0 

 Every number in top row is smallest possible number not on top row to its 

left and bottom row starting from its position and going right 

o Build the tree 

 Start with 0, read table (R → L) and connect each 

top-bottom pair with edge, creating new vertex 

whenever it does not already exist. Result on right. 

  

1  2  5  3  4 
2  5  3  4   
5  3  4     
  4       
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Lecture 30 – 2016/11/18 
Prüfer codes (cont) 

 Recall the function we defined last time. 

 V = {0, 1, …, n – 1} 

 f: Vn – 2 → {graphs on V}  Edge table 

 f(2 4 0 3 3 1) = ?   5 2 4 6 7 3 1 
      2 4 0 3 3 1 0 

 Suppose u1, u2, …, un – 2, un – 1 is the edge table; note that by the way the top row is 
  v1  v2, …,  vn – 2, 0 constructed, all of u’s are distinct; so each 

 Now we use induction number from {1, 2, …, n – 1} occurs 

 Clearly the graph on {un-1, o) with just exactly once 

one edge is a tree. After adding edges (𝑢𝑛−1
𝑜

), (𝑢𝑛−2
𝑣𝑛−2

), …, (𝑢𝑖+1
𝑣𝑖+1

)  

 To add (𝑢𝑖
𝑣𝑖

), we create the new vertex ui and join it to vi 

o vi has already been created, since it cannot be among u,1, u2, …, u, therefore adding 

(𝑢𝑖
𝑣𝑖

) produces another tree ∎ 

 So actually f: Vn-2 → {trees on V}; in fact, f is a bijection 

 Surjective 

o Let T be a given tree on V = {0, 1, …, n – 1}; we create a sequence in Vn-2 as follows 

o Go to the smallest nonzero leaf u in T; say its neighbour is v 

o Add v to sequence (sequence is constructed left to right) 

o Delete u from T along with edge uv 

o Go back to first step until there is only 0 remains 

o Delete 0 from end of sequence 

o Sequence for tree on the right: 2 4 0 3 3 1 0 

o Suppose we get the sequence v1, v2, …, vn-2 

o Do we have f(v1, v2, …, vn-2) = T? Edge table 

o First build the edge table u1, u2, …, un-2, un-1 

o All the nonzero numbers in the bottom row are internal v1, v2, …,  vn-2, 0 

vertices of T. So u1 is the smallest number which is not an internal vertex of T. In 

other words, u1 is the smallest leaf in T; (𝑢𝑖
𝑣𝑖

) is an edge 

o In general {vi+1, …, vn-2} is the set of nonzero internal vertices of  

Ti ≔ T – u1 – u2 – … – ui and ui+1 is the smallest leaf ∎ 

 Injective 

o Let T be a given tree on V = {0, 1, …, n – 1} 

o For each i = 1, 2, …, n – 2, the following statement holds 

o After removing the first i leaves in the procedure, the nonzero internal vertices must 

be vi+1, …, vn-2 as defined in the surjective proof, and their multiplicity is their degree 

minus one. This completely determines the sequence v1, v2, …, vn-2 ∎ 

 Thm (Cayley’s theorem): the number of labelled trees on n vertices is nn-2  
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Lecture 31 – 2016/11/21 
Graph Colouring 

 A vertex colouring of a graph is a function c:V → N. A vertex colouring is called proper if c(x) 
≠ c(y) wherever xy ∈ E 

 The chromatic number of G, denoted X(G), is the smallest number of colours you can use to 
properly colour the vertices of G 

 Example on the right (numbers denote colour): 

 In fact, X(G) = 3. To prove this… 

 No way to properly 2-colour this (triangle graph, three vertices) 

 Graph colouring gets used in many ways 
o Schedule problems 

 Colours are rooms, vertices are lectures, edges join vertices whose lecture 

times are scheduled to overlap  
 Proper colouring gives room assignment with no conflicts 

o Telecommunications  

 Colours are rooms, vertices are transmitters, edges join vertices whose 

transmitters are close enough to interfere with each other 

 Proper colouring corresponds to frequency assignment with no interference. 

Greedy Algorithm for Colouring 
 Finding a vertex colouring of G using X(G) colours is a hard (NP) computational problem 

Even finding X(G) is hard; would be nice to have an algorithm that gives some proper 

colouring with a not too large number of colours 

 We have a set of colours 1, 2, 3, 4, … 

 Consider the vertices in any order v1, v2, v3, … 

 When considering vi, colour with the smallest 
colour not used by neighbours; order matters 

 Maximum number of colours used by the greedy algorithm is ≤ Δ(G) + 1 
Where Δ(G) ≔ max {deg(v) : v ∈ V} is the maximum degree of G = (V, E) 

 Thm: If G = (V, E) has max degree Δ = Δ(G), then 

o (i) X(G) ≤ Δ + 1            (ii) X(G) ≤ Δ if G is not regular (all vertices have same degree) 

 Pf 
o We’ve already proven (i); just apply greedy algorithm 

o For (ii), we may suppose without loss of generality that G is connected 

 Otherwise just apply this proof separately to each connected component 

 ∵ G is not regular ∴ ∃v ∈ V with deg(v) ≤ Δ – 1 

 Set vn = v; starting from v1, do breadth-first search 

 G is connected, so every vertex gets listed 

 Now, apply greedy algorithm with ordering v1, v2, …, vn 

 By construction, each vertex (except vn) has at least one neighbour which 

gets considered after it, so when the greedy algorithm is colouring vi, at most 

Δ – 1 colours have been used by the neighbours of vi. One colour from 1, 2, …, 

Δ is always usable ∎ 
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Lecture 32 – 2016/11/23 
Colouring 

 A stronger theorem is true compared to last lecture’s greedy algorithm. 

 Thm: (Brooks 1941) 

o Let G be a connected graph. If G is neither complete, nor an odd cycle, then 

X(G) ≤ Δ(G)   Pf not given in class. 

Bipartite Graphs 
 A graph G = (V, E) is bipartite if there is a partition A ∪ B = V of V 

such that every edge has one end in A and the other end in B 

 Examples on the right (ignore the gap for overlapping lines) 

 Observation: A graph is bipartite if and only if it is properly colourable with just 2 colours 

 Thm: A graph G = (V, E) is bipartite if and only if it contains no odd cycle 

 Pf: If G has an odd cycle, it cannot be bipartite 
o We may suppose without loss of generality that G is connected 

o Take a spanning tree T of G, and fix some vertex r (“the root”) 

o For each v ∈ V, there is a unique path in T from r to v. The path length is either odd 

or even; this defines a bipartition of V. We show that G is bipartite with this 

bipartition. 

o Assume there is an edge e ∈ E between the vertices x, y. If e is in T, then x and y have 

different parities. (Only one edge in between) 

o If e is not in T, let P be the path in T from x to y. Then P + e is a cycle, which must be 

even. So P has odd length, and the vertices in P must alternate between odd and 

even; x and y have different parities ∎ 

The Marriage Theorem 
 In a village, there are 50 males and 50 females. We are the matchmaker, and our job is to 

pair up boys with girls. Is it possible to do this so that no one gets paired with a stranger? 

 We represent this situation with a bipartite graph → put males on one side, females on the 
other, and draw an edge between male and female if there is an acquaintance 

 A perfect matching in a graph is a set of edges M such that every vertex is incident with 
exactly one edge in M 

 Our marriage problem is to decide whether there is a perfect matching in a 
given bipartite graph. 

 Let G be a bipartite graph whose partition has parts A and B 

 For any S ⊆ A, let T(S) be the set of vertices in B adjacent to at least one 

vertex in S (see graph on right; vertices in T(S) are circled)  

 Thm: (The marriage theorem) G has a perfect matching if and only if |A| = |B| and |T(S)| ≥ 
|S| for every S ⊆ A 
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Lecture 33 – 2016/11/25 
The Marriage Theorem 

 G: A bipartite graph with bipartition A, B. For S ⊆ A, let T(S) be the 
set of vertices in B adjacent to at least one vertex in S 

 Thm (the marriage theorem): G has a perfect matching if and only 
if |A| = |B| and |T(S)| ≥ S 

 Observation: The necessary condition in the marriage theorem 
goes “left to right”, but a similar condition going right to left is equivalent  

 Pf: If T ⊆ B, then T(A \ T(T)) ∩ T = ∅, so T(A \ T(T)) ≤ |B| - |T|,  
and |T(A \ T(T))| ≥ |A \ T(T)| = |A| - |T(T)| (since G satisfies the left-right condition) 

so |A| - |T(T)| ≤ |B| – |T| ⇒ |T| ≤ |T(T)| ∎ 

Proof of the Marriage Theorem 
 Necessity: easy 

 Sufficiency: induction on |A| = |B| 

o Base case |A| = |B| = 1 

o Induction step: Call a bipartite graph “good” if it satisfied the necessary conditions of 

the theorem 

o Take a ∈ A and b ∈ B, where a and b are adjacent vertices 

o If G – a – b is good, then we’re done by induction 

o Otherwise, there is an S ⊆ A \ {a} such that |T(S) \ {b}| < |S| 

o Since G was good, this can only happen if b ∈ T(S) and |S| = T(S)| 
o Now, the graph induced on vertices S, T(S) is good, so it has perfect matching by 

induction 

o We’ll be done by induction if we can show the graph G’ induced on vertices A = A \ 

S, B’ = B \ T(S) [the unmatched vertices] is also good 

o For this, we use the “right to left” definition of goodness. If T ⊆ B’, then T(T) ⊆ A’, so 

G’ is good because G was good ∎ 

Planar Graphs 
 A graph G is planar if it can be drawn on a plane such that no 

pair of edges cross 

 The regions of the plan cut out by the edges Y are called faces 
in a planar drawing of a graph  

 The unbounded face of the drawing is called the outer face 

 Let f = # face, v = # vertices, e = # edges 

 Thm (Euler 1752): A connected planar graph satisfies v + f – e = 2 
o Observe that Euler’s formula implies that while a graph may 

have different planar drawings, they all have the same number 

of faces 
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Lecture 34 – 2016/11/28 
 Question: You’ve got a pile of 8 batteries. You know 4 are full, and 4 are empty. You’ve got a 

flashlight which takes 2 batteries, and they both have to be full   for the 

flashlight to turn on. How many times must you try turning on the flashlight in order to 

decide whether it is broken? Answer is 7 

Euler’s Theorem 
 A connected planar graph satisfied v + f – e = 2 

where v = #vertices, e = #edges, f = #faces 

o Pf: induction on e 

 Base case: G is a tree; in this case f = 1, e = v – 1, formula holds 

 Induction: if G is not a tree, then it has a cycle. Pick an edge in same cycle, 

and delete it; call the resulting graph G’. G’ therefore has one less edge and 

one less face that G; by induction, 2 = v + (f – 1) – (e – 1) = v + f – e 

 Euler’s formula also allows us to upper bound the number of edges in any planar graph 

 Thm: If e ≥ 3 in any planar graph, then e ≤ 3v – 6 
o Pf: in any planar graph, each edge touches ≤ 2 faces. But each face touches ≥ 3 

edges. 

So the #pairs (e, f) where e touches f satisfies 2e ≥ #pairs ≥ 3f 

By Euler’s formula, 3(e + 2) = 3v + 3f ≤ 3v + 2e; 3e + 6 ≤ 3v + 2e; e ≤ 3v – 6 ∎ 

o From this wee see K5 is not planar: v = 5, e = (5
2
) = 10, and 15 – 6 < 10 
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Lecture 35 – 2016/11/30 
 Last time we proved… 

 Thm: In a planar graph, if e ≥ 3, then e ≤ 3v – 6 

 If we know the graph is bipartite, we can strengthen the last theorem 

 In a bipartite graph, a face must touch ≥ 4 edges. So let’s redo the estimate from the last 
proof 

 2e ≥ #(e, f) ≥ 4f 

 From Euler’s formula 
o 4(e + 2) = 4(v + f) 

o 4e + 8 ≤ 4v + 2e 

 Thm: If G is a bipartite planar graph, with ≥ 4 edges, then e ≤ 2v – 4 

 Cor: K3, 3 is not planar 

Map Colouring 
 Suppose we want to colour a map so that when two countries touch, they get different 

colours. We can turn map colouring into graph colouring by giving a vertex to each country 

and joining two vertices with an edge when the corresponding countries touch. 

 Thm (Four colour theorem, Appel-Haken 1976) 
o Every planar graph can be properly coloured with just four colours 

 No human-readable proof currently exists (proof is done by computation) 

 Thm (Five colour theorem) 

o Every planar graph can be properly coloured with just five colours (easier to prove) 

o Lemma: Every planar graph has a vertex with degree ≤ 5 

 Pf: by contradiction, assume every vertex has degree ≥ 6 

 Recall #edges = 
1

2
∑ deg (𝑣)𝑣∈𝑉 , so #edges ≥ 6/2 #vertices = 3 #vertices 

 But we know #edges ≤ 3 #vertices – 6, so there are too many vertices 
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