MATH 323: Probability

Allan Wang

Last updated: January 16, 2019

Contents

1 Formulas

Mean & Variance

General | Mean
$$(\mu)$$

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

Variance
$$(\sigma^2)$$

$$\frac{1}{n-1} \sum_{i=1}^n (y_i - \overline{y})^2$$

Expected Value & Variance

General

Probability

E(Y)

V(Y)

 $M_x(t)$

Bernoulli

Realization

 $P_x(x)$

 $M_x(t)$

E(X)

V(X)

Binomial

Realization

 $P_x(x)$

 $M_x(t)$

E(X)

V(X)

Geometric

Realization

 $P_x(x)$

 $M_x(t)$

E(X)

V(X)

Negative Binomial

Realization

 $P_x(x)$

 $M_x(t)$

E(X)

V(X)

p(y)

 $\mu = \sum_{y} y p(y)$

 $\sigma^2 = E[(Y - \mu)^2] = E(Y^2) - \mu^2$

 $E(e^{tx})$

$$x = 0, 1$$

$$p^x(1-p)^{1-x} = p^x q^{1-x}$$

$$(1-p)+pe^t$$

$$\sum_{x=0}^{1} x p^x q^{1-x} = p$$

$$E(X^2) - E(X)^2 = p(1-p)$$

x = 0, 1, ..., n

 $C_r^n p^x (1-p)^{n-x}$

 $(pe^t + 1 - p)^n$

np

np(1-p)

x = 1, 2, ...

 $p(1-p)^{x-1}$

 $\frac{pe^t}{1-(1-p)e^t}$

 $\frac{p}{1-p}$

 $x = r, r + 1, \dots$

 $C_{r-1}^{x-1}p^rq^{x-r}$

 $\left[\frac{pe^t}{1-(1-p)e^t}\right]^{t}$

 $r \cdot \frac{1}{p}$

 $r \cdot \frac{1-p}{p^2}$

Poisson

Realization

 $P_x(x)$

 $M_x(t)$

E(X)

V(X)

Exponential Distribution

Realization

 $P_x(x)$

 $M_x(t)$

E(X)

V(X)

Uniform Distribution

Realization

 $P_x(x)$

 $M_x(t)$

E(X)

V(X)

Gamma

Realization

 $P_x(x)$

 $M_x(t)$

E(X)

V(X)

Beta

Realization

 $P_x(x)$

 $M_x(t)$

E(X)

V(X)

 $x = 0, 1, 2, \dots$

 $\frac{e^{-\lambda} \cdot \lambda^x}{x!}$ $e^{\lambda(e^t - 1)}$

 λ

 λ

 $X \sim Exp(\lambda), x > 0$

 $\lambda e^{-\lambda x}$

 $\frac{\lambda}{\lambda - t}$ $\frac{1}{\lambda}$ $\frac{1}{\lambda^2}$

a < x < b

 $\frac{1}{b-a} = c$ $\frac{e^{tb} - e^{ta}}{t(b-a)}$ $\frac{a+b}{2}$ $\frac{(b-a)^2}{12}$

x > 0

 $\frac{\lambda^{\alpha} x^{\alpha - 1} e^{-\lambda x}}{\Gamma(\alpha)}$ $\frac{\Gamma(\alpha)}{\beta^{\alpha}} = \int_{0}^{\infty} x^{\alpha - 1} e^{-\beta x} dx, \quad \Gamma(\alpha) = (\alpha - 1)!$ $\left(\frac{\lambda}{\lambda - t}\right)^{\alpha}$

 $\alpha\beta$

 $\alpha\beta^2$

0 < x < 1

 $\frac{1}{B(\alpha,\beta)}x^{\alpha-1}(1-x)^{\beta-1}$ $\alpha,\beta > 0 \quad B(\alpha,\beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$

 $\frac{\frac{\alpha}{\alpha+\beta}}{\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}}$

Normal

Realization

 $P_x(x)$

E(X)

V(X)

Standard z

$$\begin{vmatrix} -\infty < x < \infty \\ \frac{1}{\sigma\sqrt{2\pi}} e^{-(x-\mu)^2/(2\sigma^2)} \\ \mu \\ \sigma^2 \\ \frac{x-\mu}{\sigma} \end{vmatrix}$$

Chi-square is a beta distribution where $\alpha = \frac{v}{2}$ for some v, and $\beta = 2$ ($\lambda = \frac{1}{2}$). This makes $\mu = v$ and $\sigma^2 = 2v$

Combination & Permutation

- $\bullet P_r^n = \frac{n!}{(n-r)!}$
- $\bullet \ \binom{n}{r} = C_r^n = \frac{n!}{r!(n-r)!}$
- Permutation of n objects of k kinds, where n_i is the number of times type k occurs, is $\frac{n!}{n_1!n_2!...n_k!}$
- Circular permutations (round table) with n items taken r at a time = $\frac{P_r^n}{r}$

PMF & CDF

PMF: Probability Mass Function

Discrete r.v.: P(x) = P(X = x)

- $0 \le P(x) \le 1, \forall x$
- $\sum_{x} P(x) = 1$

CDF: Cumulative distribution function: $F_x(x) = P(X \le x), x \in \mathbb{R}$

- $0 \le F(x) \le 1$
- $\lim_{x\to-\infty} F(x) = 0$, $\lim_{x\to\infty} F(x) = 1$
- Non-decreasing: $x_1 \le x_2 \Rightarrow F(x_1) \le F(x_2)$
- Right continuous

Moment Generating Function

Given $m(t) = E(e^{tY}), E(Y^k) = m^{(k)}(0) = \mu'_k, \mu'_1 = \mu.$

In finding derivatives, we can also find it against $log(m_x(t))$, as m(0) = 1

For simplification, note that $\sum_{0}^{\infty} \frac{f^t}{y!} = e^f$ Properties

- $M_{x+a}(t) = E[e^{(x+a)t}] = e^{at}M_x(t)$
- $\bullet \ M_{bx}(t) = E[e^{(bx)t}] = M_x(bt)$
- $\bullet \ M_{\frac{x+a}{b}}(t) = e^{\frac{a}{b}t} M_x(\frac{t}{b})$

Inequalities

- Markov: $E(x) < \infty \Rightarrow$ $P(x \ge c) \le \frac{E(x)}{c}, \forall c > 0$
- Tchebysheff: $E(x), Var(x) < \infty \Rightarrow$ $P(|x - \mu| \ge k\sigma) \le \frac{1}{k^2} \text{ or}$ $P(|x - \mu| < k\sigma) \ge 1 - \frac{1}{k^2}$
- Chernoff: $M_x(t)$ is a mgf of r.v. x, and $c > 0 \Rightarrow$ $P(x \ge c) \le e^{-tc} M_x(t) \forall t > 0$ $P(x \le c) \le e^{-tc} M_x(t) \forall t < 0$

Misc

- $P(A \mid B) = \frac{A \cap B}{P(B)}$ if P(B) > 0
- Skewness

$$\frac{\mu^3}{\sigma^3} \begin{cases} > 0 & \text{right} \\ = 0 & \text{symmetric} \\ < 0 & \text{left} \end{cases}$$
(1)

• Kurtosis

$$\frac{\mu^4}{\sigma^4} - 3 \begin{cases} > 0 & \text{peaked} \\ = 0 & \text{normal} \\ < 0 & \text{flat} \end{cases}$$
 (2)

• Jensen: f(x) is a convex function if: $a \cdot f(x_1) + (1-a) \cdot f(x_2) \ge f(ax_1 + (1-a)x_2)$, where $0 \le a \le 1$ This also means that $E(f(x)) \ge f(E(x))$

2 Theories & Definitions

Kolmogorov Axioms

 $\forall A\in\Sigma\text{:}$

m!

- 1. $P(A) \ge 0$ (non-negative)
- 2. $P(\Sigma) = 1$ (normed)

3.
$$P\left(\bigcup_{j=1}^{\infty} A_j\right) = \sum_{j=1}^{\infty} P(A_j)$$
 when $A_i \cap A_j = \emptyset$ $\forall i \neq j$ (linearly-additive)

De-Morgan's Theorem

m!

(a)
$$(A \cap B)^C = A^C \cup B^C$$

(b)
$$(A \cup B)^C = A^C \cap B^C$$

Partition

Let $\{A_i\}_{i=1}^{\infty(k)}$ be a sequence of sets $A_i \leq \Omega, \forall i$. If: m!

i.
$$A_i \cap A_j = \emptyset, \forall i \neq j$$

ii.
$$\bigcup_{i=1}^{\infty(k)} A_i = \Sigma$$

then we say $\{A_i\}_{i=1}^{\infty(k)}$ is a partition of sample space Ω : $\Omega = \bigcup_{j=1}^k A_j$

Inequalities (Boole, Bonferroni)

m!

A. Boole's Inequality

Let
$$A_i, A_2, ... \in \mathcal{F}$$

 $\Rightarrow P(\bigcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} P(A_i)$

B. Bonferroni's Inequality

$$P\left(\bigcap_{i=1}^{\infty} A_i\right) \ge 1 - \sum_{i=1}^{\infty} P(A_i^C)$$

Baye's Rule

Assume $\{A_1, A_2, ..., A_k\}$ is a partition of Ω such that $P(A_i) > 0 \forall i$ For $B \subseteq \Omega$:

C. Law of Total Probability

$$P(B) = P\left(\bigcup_{i=1}^{k} (A_i \cap B)\right)$$

$$= \sum_{i=1}^{k} P(A_i \cap B)$$

$$= \sum_{i=1}^{k} P(B \mid A_i) P(A_i)$$
(3)

D.

$$P(A_i \mid B) = \frac{P(A_i \cap B)}{P(B)}$$

$$= \frac{P(B \mid A_i)P(A_i)}{\sum_{i=1}^k P(B \mid A_i)P(A_i)}$$
(4)

3 Misc

- If $\{A_i\}_{i=1}^{\infty}$ is non-decreasing, then $\lim_{n\to\infty}A_n=\bigcup_{i=1}^{\infty}A_i$
- If $\{A_i\}_{i=1}^{\infty}$ is non-increasing, then $\lim_{n\to\infty}A_n=\bigcap_{i=1}^{\infty}A_i$

Independence

A and B are independent $(A \perp \!\!\! \perp B)$ if any of the following holds:

- $\bullet \ P(A \mid B) = P(A)$
- $\bullet \ P(B \mid A) = P(B)$
- $P(A \cap B) = P(A)P(B)$

Note that \emptyset is independent to any event, and that

$$A \perp\!\!\!\perp B \Leftrightarrow A^C \perp\!\!\!\perp B \Leftrightarrow A^C \perp\!\!\!\perp B^C \Leftrightarrow A \perp\!\!\!\perp B^C$$

4 Questions

- E. How many ways can 4 married couples seat themselves around a circular table if no couple can sit next to each other?
- F. What is the probability of getting a full house? (3 cards of some rank and 2 cards of another rank)
- G. Find the support and realization of X, where X is the number of heads, and we are tossing a fair coin three times.

5 Answers

H. $\frac{31}{105}$

Compute probabilities that i couple(s) sit next to each other for i in 1..4 and find complement of sum.

I. 0.00144

Basic combination probability:

$$\frac{\left(C_1^{13} \cdot C_3^4\right) \cdot \left(C_1^{12} \cdot C_2^4\right)}{C_5^{52}}$$

- J. Realization = number of occurrences per sample event. eg, HHH has realization 3, and THT has realization 1
 - Support = range of x. Here, it is 0 to 3
 - Table of x to P(x) showing the probability distribution of X:
 - $\begin{array}{c|c}
 x & P(x) \\
 0 & \frac{1}{8} \\
 1 & \frac{3}{8} \\
 2 & \frac{3}{8} \\
 3 & \frac{1}{8}
 \end{array}$